Skip to main content

A New Adaptive Kalman Filter with Inaccurate Noise Statistics

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new adaptive Kalman filter is proposed for a linear Gaussian state-space model with inaccurate noise statistics based on the variational Bayesian (VB) approach. Both the prior joint probability density function (PDF) of the one-step prediction and corresponding prediction error covariance matrix and the joint PDF of the mean vector and covariance matrix of measurement noise are selected as Normal-inverse-Wishart (NIW), from which a new NIW-based hierarchical Gaussian state-space model is constructed. The state vector, the one-step prediction and corresponding prediction error covariance matrix, and the mean vector and covariance matrix of measurement noise are jointly estimated based on the constructed hierarchical Gaussian state-space model using the VB approach. Simulation results show that the proposed filter has better estimation accuracy than existing state-of-the-art adaptive Kalman filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Berlin, 2007)

    MATH  Google Scholar 

  2. X. Gao, D. You, S. Katayama, Seam tracking monitoring based on adaptive Kalman filter embedded elman neural network during high-power fiber laser welding. IEEE Trans. Ind. Electron. 59(11), 4315–4325 (2012)

    Article  Google Scholar 

  3. C. Hide, T. Moore, M. Smith, Adaptive Kalman filtering algorithms for integrating GPS and low cost INS, in Proceedings of Position Location Navigation Symposium. IEEE, Monterey, CA, USA, pp. 227–233 (2004)

  4. Y.L. Huang, Y.G. Zhang, B. Xu, Z.M. Wu, J. Chambers, A new outlier-robust Student’s t based Gaussian approximate filter for cooperative localization. IEEE/AMSE Trans. Mech. 22(5), 2380–2386 (2017)

    Article  Google Scholar 

  5. Y.L. Huang, Y.G. Zhang, A new process uncertainty robust Student’s t based Kalman filter for SINS/GPS integration. IEEE Access 5(7), 14391–14404 (2017)

    Article  Google Scholar 

  6. Y.L. Huang, Y.G. Zhang, Z.M. Wu, N. Li, J. Chambers, A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices. IEEE Trans. Autom. Control 63(2), 594–601 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Y.L. Huang, Y.G. Zhang, B. Xu, Z.M. Wu, J. Chambers, A new adaptive extended Kalman filter for cooperative localization. IEEE Trans. Aerosp. Electron. Syst. 54(1), 353–368 (2018)

    Article  Google Scholar 

  8. Y.L. Huang, Y.G. Zhang, Z.M. Wu, N. Li, J. Chambers, A novel robust Student’s t based Kalman filter. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1545–1554 (2017)

    Article  Google Scholar 

  9. Y.L. Huang, Y.G. Zhang, N. Li, J. Chambers, A robust Gaussian approximate filter for nonlinear systems with heavy-tailed measurement noises, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Shanghai, China), pp. 4209–4213 (2016)

  10. Y.L. Huang, Y.G. Zhang, N. Li, J. Chambers, A robust Gaussian approximate fixed-interval smoother for nonlinear systems with heavy-tailed process and measurement noises. IEEE Signal Proc. Lett. 23(4), 468–472 (2016)

    Article  Google Scholar 

  11. M. Karasalo, X.M. Hu, An optimization approach to adaptive Kalman filtering. Automatica 47(8), 1785–1793 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. X.R. Li, Y. Bar-Shalom, A recursive multiple model approach to noise identification. IEEE Trans. Aerosp. Electron. Syst. 30(3), 671–684 (1994)

    Article  Google Scholar 

  13. R. Mehra, Approaches to adaptive filtering. IEEE Trans. Autom. Control 17(5), 693–698 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Mohamed, K.P. Schwarz, Adaptive Kalman filtering for INS/GPS. J. Geod. 73(4), 193–203 (1999)

    Article  MATH  Google Scholar 

  15. K.P. Murphy, Conjugate Bayesian analysis of the Gaussian distribution. Technical report (2007)

  16. D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches (Wiley, New York, 2006)

    Book  Google Scholar 

  17. A.P. Sage, G.W. Husa, Adaptive filtering with unknown prior statistics, in Proceedings of Joint Automatic Control Conference. Boulder, CO, pp. 760–769 (1969)

  18. S. Särkkä, A. Nummenmaa, Recursive noise adaptive Kalman filtering by variational Bayesian approximations. IEEE Trans. Autom. Control. 54(3), 596–600 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. M.J. Yu, INS/GPS integration system using adaptive filter for estimating measurement noise variance. IEEE Trans. Aerosp. Electron. Syst. 48(2), 1786–1792 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhemin Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61573117, 61374208 and 61673128, and the Ph.D. Student Research and Innovation Fund of the Fundamental Research Founds for the Central Universities under Grant No. HEUGIP201706.

Appendices

Appendices

1.1 A. Proofs of (29)–(33)

Substituting \({\varvec{\theta }}={\hat{{\varvec{x}}}}_{k|k-1}\), \({\varvec{\theta }}={\varvec{r}}\) and (28) in (26), \(\log q^{(i+1)}({\hat{{\varvec{x}}}}_{k|k-1})\) and \(\log q^{(i+1)}({\varvec{r}})\) are written as

$$\begin{aligned}&\log q^{(i+1)}({\hat{{\varvec{x}}}}_{k|k-1})=-\frac{1}{2}\mathrm {E}^{(i)} \left[ \left( {\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k-1}\right) ^{\mathrm {T}} {\varvec{P}}_{k|k-1}^{-1}\left( {\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k-1}\right) \right] \nonumber \\&\quad -\,\frac{1}{2}\alpha _{k}\left( {\hat{{\varvec{x}}}}_{k|k-1}-{\varvec{u}}_{k}\right) ^{\mathrm {T}} \mathrm {E}^{(i)}\left[ {\varvec{P}}_{k|k-1}^{-1}\right] \left( {\hat{{\varvec{x}}}}_{k|k-1}-{\varvec{u}}_{k}\right) +c_{{\hat{{\varvec{x}}}}_{k|k-1}}, \end{aligned}$$
(81)
$$\begin{aligned}&\log q^{(i+1)}({\varvec{r}})=-\frac{1}{2}\mathrm {E}^{(i)}\left[ \left( {\varvec{z}}_{k} -{\varvec{H}}_{k}{\varvec{x}}_{k}-{\varvec{r}}\right) ^{\mathrm {T}}{\varvec{R}}^{-1} \left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\varvec{x}}_{k}-{\varvec{r}}\right) \right] \nonumber \\&\quad -\,\frac{1}{2}\beta _{k}\left( {\varvec{r}}-{\varvec{\lambda }}_{k}\right) ^{\mathrm {T}} \mathrm {E}^{(i)}\left[ {\varvec{R}}^{-1}\right] \left( {\varvec{r}}-{\varvec{\lambda }}_{k}\right) +c_{{\varvec{r}}}. \end{aligned}$$
(82)

The first expectations in (81)–(82) are calculated as follows

$$\begin{aligned}&\mathrm {E}^{(i)}\left[ \left( {\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k-1} \right) ^{\mathrm {T}}{\varvec{P}}_{k|k-1}^{-1}\left( {\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k-1} \right) \right] \nonumber \\&\quad =\mathrm {tr}\left\{ \mathrm {E}^{(i)}\left[ \left( {\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k-1} \right) \left( {\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k-1}\right) ^{\mathrm {T}}\right] \mathrm {E}^{(i)}\left[ {\varvec{P}}_{k|k-1}^{-1}\right] \right\} \nonumber \\&\quad =\mathrm {tr}\left\{ \mathrm {E}^{(i)}\left[ \left( {\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k}^{(i)} +{\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\hat{{\varvec{x}}}}_{k|k-1}\right) \left( {\varvec{x}}_{k} -{\hat{{\varvec{x}}}}_{k|k}^{(i)}+\right. \right. \right. \left. \left. \left. {\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\hat{{\varvec{x}}}}_{k|k-1}\right) ^{\mathrm {T}}\right] \times \right. \nonumber \\&\left. \mathrm {E}^{(i)}\left[ {\varvec{P}}_{k|k-1}^{-1}\right] \right\} \nonumber \\&\quad =\left( {\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\hat{{\varvec{x}}}}_{k|k-1}\right) ^{\mathrm {T}} \mathrm {E}^{(i)}\left[ {\varvec{P}}_{k|k-1}^{-1}\right] \left( {\hat{{\varvec{x}}}}_{k|k}^{(i)} -{\hat{{\varvec{x}}}}_{k|k-1}\right) +c_{{\hat{{\varvec{x}}}}_{k|k-1}}, \end{aligned}$$
(83)
$$\begin{aligned}&\mathrm {E}^{(i)}\left[ \left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\varvec{x}}_{k} -{\varvec{r}}\right) ^{\mathrm {T}}{\varvec{R}}^{-1}\left( {\varvec{z}}_{k}-{\varvec{H}}_{k} {\varvec{x}}_{k}-{\varvec{r}}\right) \right] \nonumber \\&\quad =\mathrm {tr}\{\left. \mathrm {E}^{(i)}\left[ \left( {\varvec{z}}_{k} -{\varvec{H}}_{k}{\varvec{x}}_{k}-{\varvec{r}}\right) \left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\varvec{x}}_{k} -{\varvec{r}}\right) ^{\mathrm {T}}\right] \mathrm {E}^{(i)}\left[ {\varvec{R}}^{-1}\right] \right\} \nonumber \\&\quad =\mathrm {tr}\{\mathrm {E}^{(i)}[({\varvec{z}}_{k}-{\varvec{H}}_{k} {\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\varvec{r}}-{\varvec{H}}_{k}({\varvec{x}}_{k} -{\hat{{\varvec{x}}}}_{k|k}^{(i)}))({\varvec{z}}_{k}-{\varvec{H}}_{k}{\hat{{\varvec{x}}}}_{k|k}^{(i)} -{\varvec{r}}- \nonumber \\&{\varvec{H}}_{k}({\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k}^{(i)}))^{\mathrm {T}}] \mathrm {E}^{(i)}\left[ {\varvec{R}}^{-1}\right] \} \nonumber \\&\quad =\left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\varvec{r}} \right) ^{\mathrm {T}}\mathrm {E}^{(i)}\left[ {\varvec{R}}^{-1}\right] \left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\varvec{r}}\right) +c_{{\varvec{r}}}. \end{aligned}$$
(84)

Substituting (83)–(84) in (81)–(82) and using (33) yields

$$\begin{aligned}&\log q^{(i+1)}({\hat{{\varvec{x}}}}_{k|k-1})=-\frac{1}{2} \left( {\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\hat{{\varvec{x}}}}_{k|k-1}\right) ^{\mathrm {T}} \left[ {\varvec{\bar{P}}}_{k|k-1}^{(i)}\right] ^{-1}\left( {\hat{{\varvec{x}}}}_{k|k}^{(i)} -{\hat{{\varvec{x}}}}_{k|k-1}\right) \nonumber \\&\quad -\,\frac{1}{2}\alpha _{k}\left( {\hat{{\varvec{x}}}}_{k|k-1}-{\varvec{u}}_{k}\right) ^{\mathrm {T}} \left[ {\varvec{\bar{P}}}_{k|k-1}^{(i)}\right] ^{-1}\left( {\hat{{\varvec{x}}}}_{k|k-1}-{\varvec{u}}_{k} \right) +c_{{\hat{{\varvec{x}}}}_{k|k-1}}, \end{aligned}$$
(85)
$$\begin{aligned}&\log q^{(i+1)}({\varvec{r}})=-\frac{1}{2}\left( {\varvec{z}}_{k} -{\varvec{H}}_{k}{\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\varvec{r}}\right) ^{\mathrm {T}} \left[ {\varvec{\bar{R}}}_{k}^{(i)}\right] ^{-1}\left( {\varvec{z}}_{k}-{\varvec{H}}_{k} {\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\varvec{r}}\right) \nonumber \\&\quad -\,\frac{1}{2}\beta _{k}\left( {\varvec{r}}-{\varvec{\lambda }}_{k}\right) ^{\mathrm {T}} \left[ {\varvec{\bar{R}}}_{k}^{(i)}\right] ^{-1}\left( {\varvec{r}}-{\varvec{\lambda }}_{k}\right) +c_{{\varvec{r}}}. \end{aligned}$$
(86)

Utilizing (85)–(86), we can obtain (29)–(32).

1.2 B. Proofs of (34)–(43)

Exploiting \({\varvec{\theta }}={\varvec{P}}_{k|k-1}\), \({\varvec{\theta }}={\varvec{R}}\) and (28) in (26), \(\log q^{(i+1)}({\varvec{P}}_{k|k-1})\) and \(\log q^{(i+1)}({\varvec{R}})\) are calculated as

$$\begin{aligned}&\log q^{(i+1)}({\varvec{P}}_{k|k-1})=-\frac{1}{2}(\omega _{k}+n+3)\log \left| {\varvec{P}}_{k|k-1}\right| \nonumber \\&\quad -\,\frac{1}{2}\mathrm {E}^{(i)}\left[ \left( {\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k-1} \right) ^{\mathrm {T}}{\varvec{P}}_{k|k-1}^{-1}\left( {\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k-1} \right) \right] \nonumber \\&\quad -\,\frac{1}{2}\alpha _{k}\mathrm {E}^{(i)}\left[ \left( {\hat{{\varvec{x}}}}_{k|k-1} -{\varvec{u}}_{k}\right) ^{\mathrm {T}}{\varvec{P}}_{k|k-1}^{-1}({\hat{{\varvec{x}}}}_{k|k-1} -{\varvec{u}}_{k})\right] \nonumber \\&\quad -\,\frac{1}{2}\mathrm {tr}\left\{ {\varvec{\varSigma }}_{k}{\varvec{P}}_{k|k-1}^{-1}\right\} +c_{{\varvec{P}}_{k|k-1}}, \end{aligned}$$
(87)
$$\begin{aligned}&\log q^{(i+1)}({\varvec{R}})=-\frac{1}{2}(\nu _{k}+m+3)\log \left| {\varvec{R}}\right| \nonumber \\&\quad -\,\frac{1}{2}\mathrm {E}^{(i)}\left[ \left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\varvec{x}}_{k} -{\varvec{r}}\right) ^{\mathrm {T}}{\varvec{R}}^{-1}\left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\varvec{x}}_{k} -{\varvec{r}}\right) \right] \nonumber \\&\quad -\,\frac{1}{2}\beta _{k}\mathrm {E}^{(i)}\left[ \left( {\varvec{r}}-{\varvec{\lambda }}_{k} \right) ^{\mathrm {T}}{\varvec{R}}^{-1}\left( {\varvec{r}}-{\varvec{\lambda }}_{k}\right) \right] -\frac{1}{2}\mathrm {tr}\left\{ {\varvec{\varDelta }}_{k}{\varvec{R}}^{-1}\right\} +c_{{\varvec{R}}}. \end{aligned}$$
(88)

Substituting (40)–(43) in (87)–(88) gives

$$\begin{aligned} \log q^{(i+1)}({\varvec{P}}_{k|k-1})= & {} -\frac{1}{2}(\omega _{k}+n+3)\log \left| {\varvec{P}}_{k|k-1}\right| \nonumber \\&\quad -\,\frac{1}{2}\mathrm {tr}\left\{ \left( {\varvec{A}}_{k}^{(i+1)}+{\varvec{B}}_{k}^{(i+1)} +{\varvec{\varSigma }}_{k}\right) {\varvec{P}}_{k|k-1}^{-1}\right\} +c_{{\varvec{P}}_{k|k-1}},\qquad \end{aligned}$$
(89)
$$\begin{aligned} \log q^{(i+1)}({\varvec{R}})= & {} -\frac{1}{2}(\nu _{k}+m+3)\log \left| {\varvec{R}}\right| \nonumber \\&\quad -\,\frac{1}{2}\mathrm {tr}\left\{ \left( {\varvec{C}}_{k}^{(i+1)} +{\varvec{D}}_{k}^{(i+1)}+{\varvec{\varDelta }}_{k}\right) {\varvec{R}}^{-1}\right\} +c_{{\varvec{R}}}. \end{aligned}$$
(90)

According to (89)–(90), we can obtain (34)–(39).

1.3 C. Proofs of (44)–(47)

Using \({\varvec{\theta }}={\varvec{x}}_{k}\) and (28) in (26), \(\log q^{(i+1)}({\varvec{x}}_{k})\) can be formulated as

$$\begin{aligned} \log q^{(i+1)}({\varvec{x}}_{k})= & {} -\frac{1}{2}\mathrm {tr}\left\{ \mathrm {E}^{(i+1)} \left[ \left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\varvec{x}}_{k}-{\varvec{r}}\right) \times \right. \right. \left. \left. \left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\varvec{x}}_{k} -{\varvec{r}}\right) ^{\mathrm {T}}\right] \times \mathrm {E}^{(i+1)}\left[ {\varvec{R}}^{-1}\right] \right\} \nonumber \\&\quad -\,\frac{1}{2}\mathrm {tr}\left\{ \mathrm {E}^{(i+1)}\left[ \left( {\varvec{x}}_{k} -{\hat{{\varvec{x}}}}_{k|k-1}\right) \left( {\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k-1} \right) ^{\mathrm {T}}\right] \right. \left. \mathrm {E}^{(i+1)} \left[ {\varvec{P}}_{k|k-1}^{-1}\right] \right\} +c_{{\varvec{x}}_{k}}, \nonumber \\ \end{aligned}$$
(91)

where the first and third expectations are calculated as

$$\begin{aligned}&\mathrm {E}^{(i+1)}\left[ \left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\varvec{x}}_{k} -{\varvec{r}}\right) \left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\varvec{x}}_{k} -{\varvec{r}}\right) ^{\mathrm {T}}\right] \nonumber \\&\quad =\,\mathrm {E}^{(i+1)} \left[ \left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\varvec{x}}_{k}-\right. \left. {\hat{{\varvec{\lambda }}}}_{k}^{(i+1)}+{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)} -{\varvec{r}}\right) \left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\varvec{x}}_{k} -{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)}+{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)} -{\varvec{r}}\right) ^{\mathrm {T}}\right] \nonumber \\&\quad =\left( {\varvec{z}}_{k}-\right. \left. {\hat{{\varvec{\lambda }}}}_{k}^{(i+1)} -{\varvec{H}}_{k}{\varvec{x}}_{k}\right) \left( {\varvec{z}}_{k}-{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)} -{\varvec{H}}_{k}{\varvec{x}}_{k}\right) ^{\mathrm {T}}+{\hat{{\varvec{\varOmega }}}}_{k}^{(i+1)}, \end{aligned}$$
(92)
$$\begin{aligned}&\mathrm {E}^{(i+1)}\left[ \left( {\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k-1}\right) \left( {\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k-1}\right) ^{\mathrm {T}}\right] \nonumber \\&\quad =\mathrm {E}^{(i+1)}\left[ \left( {\varvec{x}}_{k}-\right. \right. \left. \left. {\hat{{\varvec{u}}}}_{k}^{(i+1)}+{\hat{{\varvec{u}}}}_{k}^{(i+1)}-{\hat{{\varvec{x}}}}_{k|k-1}\right) \left( {\varvec{x}}_{k}-{\hat{{\varvec{u}}}}_{k}^{(i+1)}+{\hat{{\varvec{u}}}}_{k}^{(i+1)}-\right. \right. \left. \left. {\hat{{\varvec{x}}}}_{k|k-1}\right) ^{\mathrm {T}}\right] \nonumber \\&\quad =\left( {\varvec{x}}_{k}-{\hat{{\varvec{u}}}}_{k}^{(i+1)}\right) \left( {\varvec{x}}_{k} -{\hat{{\varvec{u}}}}_{k}^{(i+1)}\right) ^{\mathrm {T}}+{\hat{{\varvec{U}}}}_{k}^{(i+1)}. \end{aligned}$$
(93)

Employing (31) and (92)–(93) in (91) yields

$$\begin{aligned}&\log q^{(i+1)}({\varvec{x}}_{k})=-\frac{1}{2}\left( {\varvec{z}}_{k} -{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)}-{\varvec{H}}_{k}{\varvec{x}}_{k}\right) ^{\mathrm {T}} \left[ {\varvec{\bar{R}}}_{k}^{(i)}\right] ^{-1}\left( {\varvec{z}}_{k} -{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)}-{\varvec{H}}_{k}{\varvec{x}}_{k}\right) \nonumber \\&\quad -\,\frac{1}{2}\left( {\varvec{x}}_{k}-{\hat{{\varvec{u}}}}_{k}^{(i+1)}\right) ^{\mathrm {T}} \times \left[ {\varvec{\bar{P}}}_{k|k-1}^{(i)}\right] ^{-1}\left( {\varvec{x}}_{k} -{\hat{{\varvec{u}}}}_{k}^{(i+1)}\right) +c_{{\varvec{x}}_{k}}, \end{aligned}$$
(94)

According to (94), we can obtain (44)–(47), where (45)–(47) is given by the measurement update of the Kalman filter.

1.4 D. Proofs of (55)–(58)

Exploiting (29)–(30) and (44), the auxiliary parameters \({\varvec{A}}_{k}^{(i+1)}\), \({\varvec{B}}_{k}^{(i+1)}\), \({\varvec{C}}_{k}^{(i+1)}\) and \({\varvec{D}}_{k}^{(i+1)}\) in (40)–(43) can be, respectively, calculated as

$$\begin{aligned} {\varvec{A}}_{k}^{(i+1)}= & {} \mathrm {E}^{(i)}\left[ \left( {\varvec{x}}_{k} -{\hat{{\varvec{x}}}}_{k|k}^{(i)}+{\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\hat{{\varvec{u}}}}_{k}^{(i+1)} +{\hat{{\varvec{u}}}}_{k}^{(i+1)}-\right. \right. \left. \left. {\hat{{\varvec{x}}}}_{k|k-1}\right) \left( {\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k}^{(i)}\right. \right. \nonumber \\&\quad +\,\left. \left. {\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\hat{{\varvec{u}}}}_{k}^{(i+1)} +{\hat{{\varvec{u}}}}_{k}^{(i+1)}-{\hat{{\varvec{x}}}}_{k|k-1}\right) ^{\mathrm {T}}\right] \nonumber \\= & {} {\varvec{P}}_{k|k}^{(i)}+\left( {\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\hat{{\varvec{u}}}}_{k}^{(i+1)} \right) \left( {\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\hat{{\varvec{u}}}}_{k}^{(i+1)}\right) ^{\mathrm {T}} +{\hat{{\varvec{U}}}}_{k}^{(i+1)}, \end{aligned}$$
(95)
$$\begin{aligned} {\varvec{B}}_{k}^{(i+1)}= & {} \alpha _{k}\mathrm {E}^{(i+1)} \left[ \left( {\hat{{\varvec{x}}}}_{k|k-1}-{\hat{{\varvec{u}}}}_{k}^{(i+1)}+{\hat{{\varvec{u}}}}_{k}^{(i+1)} -{\varvec{u}}_{k}\right) \right. \nonumber \\&\quad \times \left. \left( {\hat{{\varvec{x}}}}_{k|k-1}-{\hat{{\varvec{u}}}}_{k}^{(i+1)}+{\hat{{\varvec{u}}}}_{k}^{(i+1)} -{\varvec{u}}_{k}\right) ^{\mathrm {T}}\right] \nonumber \\= & {} \alpha _{k}{\hat{{\varvec{U}}}}_{k}^{(i+1)}+\alpha _{k}\left( {\hat{{\varvec{u}}}}_{k}^{(i+1)} -{\varvec{u}}_{k}\right) \left( {\hat{{\varvec{u}}}}_{k}^{(i+1)}-{\varvec{u}}_{k}\right) ^{\mathrm {T}}, \end{aligned}$$
(96)
$$\begin{aligned} {\varvec{C}}_{k}^{(i+1)}= & {} \mathrm {E}^{(i)}\left[ \left( {\varvec{z}}_{k}-{\varvec{H}}_{k} {\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)}-{\varvec{H}}_{k}({\varvec{x}}_{k} -{\hat{{\varvec{x}}}}_{k|k}^{(i)})+{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)}-{\varvec{r}}\right) \right. \nonumber \\&\quad \times \left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)} -{\varvec{H}}_{k}({\varvec{x}}_{k}-{\hat{{\varvec{x}}}}_{k|k}^{(i)})\right. \left. \left. +{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)}-{\varvec{r}}\right) ^{\mathrm {T}}\right] \nonumber \\= & {} {\varvec{H}}_{k}{\varvec{P}}_{k|k}^{(i)}{\varvec{H}}_{k}^{\mathrm {T}}+{\hat{{\varvec{\varOmega }}}}_{k}^{(i+1)} +\left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\hat{{\varvec{x}}}}_{k|k}^{(i)}-{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)} \right) \left( {\varvec{z}}_{k}-{\varvec{H}}_{k}{\hat{{\varvec{x}}}}_{k|k}^{(i)}- {\hat{{\varvec{\lambda }}}}_{k}^{(i+1)}\right) ^{\mathrm {T}}, \end{aligned}$$
(97)
$$\begin{aligned} {\varvec{D}}_{k}^{(i+1)}= & {} \beta _{k}\mathrm {E}^{(i+1)}\left[ \left( {\varvec{r}} -{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)}+{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)} -{\varvec{\lambda }}_{k}\right) \right. \left. \left( {\varvec{r}}-{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)} +{\hat{{\varvec{\lambda }}}}_{k}^{(i+1)}-{\varvec{\lambda }}_{k}\right) ^{\mathrm {T}}\right] \nonumber \\= & {} \beta _{k}{\hat{{\varvec{\varOmega }}}}_{k}^{(i+1)}+\beta _{k} \left( {\hat{{\varvec{\lambda }}}}_{k}^{(i+1)}-{\varvec{\lambda }}_{k}\right) \left( {\hat{{\varvec{\lambda }}}}_{k}^{(i+1)}-{\varvec{\lambda }}_{k}\right) ^{\mathrm {T}}. \end{aligned}$$
(98)

According to (95)–(98), we can obtain (55)–(58).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Wu, Z. & Huang, Y. A New Adaptive Kalman Filter with Inaccurate Noise Statistics. Circuits Syst Signal Process 38, 4380–4404 (2019). https://doi.org/10.1007/s00034-019-01053-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01053-w

Keywords