Skip to main content
Log in

Improved Optimum Nonnegative Integer Bit Allocation Algorithm Using Fuzzy Domain Variance Estimation and Refinement for the Wavelet-Based Image Compression

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Optimum nonnegative integer bit allocation (ONIBA) is a conspicuous technique, which usually provides the solution of optimal quantization issues for the transform coders (TCs). In order to obtain the optimum bits for a specific quantizer, all the existing ONIBA algorithms strongly rely on the variance characteristics of transform coefficients. Typically, in the wavelet-based TCs, the sub-band variances are directly estimated in the wavelet domain. This direct variance estimation is not supposed to be the best way to obtain the exact variance information, because the practical values of the wavelet coefficients may not be precise and therefore constitute an uncertain environment for the accurate variance estimation. Consequently, all the existing ONIBA algorithms often exhibit poor quantization performance in the presence of entropy coder. Hence, this paper presents a new fuzzy domain variance estimation and refinement (FDVER)-based ONIBA algorithm to attain the real optimum quantization of the wavelet coefficients in the presence of entropy coder. The outcome shows that the proposed FDVER-ONIBA algorithm outperforms and provides high-quality image compression along with the significant bitrate savings by the efficient quantization of the wavelet coefficients as compared to the existing common sub-band coding technique and the recent ONIBA algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.C. Aas, C.T. Mullis, Minimum mean-squared error transform coding and subband coding. IEEE Trans. Inf. Theory 42(4), 1179–1192 (1996)

    Article  MATH  Google Scholar 

  2. G. Bjontegaard, Calculation of average PSNR differences between RD-curves, VCEG-M33, ITU-T Video Coding Expert Group 13th Meeting, Austin, Texas (2001)

  3. G. Bjontegaard, Improvements of the BD-PSNR Model, VCEGAI11. ITU-T Video Coding Expert Group 35th Meeting, Berlin, Germany (2008)

  4. T. Borer, T. Davies, A. Suraparaju, Dirac video compression. BBC R and D White Paper, WHP 124, September (2005)

  5. T. Borer, T. Davies, Dirac-Video compression using open technology. EBU Technical Review. [Online]. Available: http://www.ebu.ch/en/technical/trev/trev_303-borer.pdf

  6. T. Chaira, A.K. Ray, Fuzzy Image Processing and Applications with MATLAB, 1st edn. (CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2009)

    MATH  Google Scholar 

  7. J.J. Dubnowski, R.E. Crochiere, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Variable Rate Coding (Washington, DC, 1979), pp. 445–448

  8. B. Farber, K. Zeger, Quantization of multiple sources using nonnegative integer bit allocation. IEEE Trans. Inf. Theory 52(11), 4945–4964 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Fox, Discrete optimization via marginal analysis. Manag. Sci. 13(3), 210–216 (1966)

    Article  MATH  Google Scholar 

  10. Fuzzy Logic Toolbox: User’s Guide (R2017b), by MathWorks (Online available at) https://in.mathworks.com/help/pdf_doc/fuzzy/fuzzy.pdf

  11. H. Gazzah, A.K. Khandani, Optimum non-integer rate allocation using integer programming. Electron. Lett. 33(24), 2034 (1997)

    Article  Google Scholar 

  12. E. Gershikov, M. Porat, On color transforms and bit allocation for optimal subband image compression. Signal Process.: Image Commun. 22(1), 1–18 (2007)

    Google Scholar 

  13. R.C. Gonzalez, R.E. Woods, S.L. Eddins, Digital Image Processing Using MATLAB, 2nd edn. (Prentice-Hall, Englewood Cliffs, 2010)

    Google Scholar 

  14. R.C. Gonzalez, R.E. Woods, Image compression, in Digital image Processing, 3rd edn. (Prentice Hall, Englewood Cliffs, 2012), pp. 526–538

  15. L.M. Goodman, Optimum rate allocation for encoding sets of analog messages. Proc. IEEE 53(11), 1776–1777 (1965)

    Article  Google Scholar 

  16. C. Grauel, Sub-band coding with adaptive bit allocation. Signal Proc. 2(1), 23–30 (1980)

    Article  Google Scholar 

  17. L. Guo, Y. Meng, Round-up of integer bit allocation. Electron. Lett. 38(10), 466–467 (2002)

    Article  Google Scholar 

  18. M. Hatam, M.A.M. Shirazi, Optimum nonnegative integer bit allocation for wavelet based signal compression and coding. Inf. Sci. 297(10), 332–334 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Hatam, M.A.M. Shirazi, Analytical method for optimum non-negative integer bit allocation. IET Signal Process. 10(8), 936–946 (2016)

    Article  Google Scholar 

  20. J. Huang, P. Schultheiss, Block quantization of correlated Gaussian random variables. IEEE Trans. Commun. Syst. 11(3), 289–296 (1963)

    Article  Google Scholar 

  21. H. Ishii, S. Hara, A subband coding approach to control under limited data rates and message losses. Automatica 44(4), 1141–1148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Jayaraman, S. Esakkirajan, T. Veerakumar, Image Compression, in Digital Image Processing, 1st edn. (Tata McGraw Hill Education, 2009), pp. 444–541

  23. JPEG 2000 Part I: Final Draft International Standard (ISO/IEC FDIS15444-1), ISO/IEC JTC1/SC29/WG1 N1855, (August 2000)

  24. S.P. Nanavati, P.K. Panigrahi, Wavelets: applications to image compression. J. Resonance 10, 52–61 (2005)

    Article  Google Scholar 

  25. E.A. Riskin, Optimal bit allocation via the generalized BFOS algorithm. IEEE Trans. Inf. Theory 37(2), 400–402 (1991)

    Article  MathSciNet  Google Scholar 

  26. Y. Shoham, A. Gersho, Efficient bit allocation for an arbitrary set of quantizers. IEEE Trans. Acoust. Speech Signal Process. 36(9), 1445–1453 (1988)

    Article  MATH  Google Scholar 

  27. D.S. Taubman, M.W. Marcellin, JPEG2000 Image Compression Fundamentals, Standards and Practice (Kluwer, Norwell, 2002)

    Book  Google Scholar 

  28. D. Taubman, M. Marcellin, JPEG2000: standard for interactive imaging. Proc. IEEE 90(8), 1336–1357 (2002)

    Article  Google Scholar 

  29. V.S. Thakur, S. Gupta, K. Thakur, Hybrid WPT-BDCT transform for high-quality image compression. IET Image Process. 11(10), 899–909 (2017)

    Article  Google Scholar 

  30. V.S. Thakur, S. Gupta, K. Thakur, K.R. Rao, Gradient feature based improved optimum non-negative integer bit allocation for the DCT based image coding. Int. J. Netw. Syst. 7(5), 1–7 (2018)

    Article  Google Scholar 

  31. K.S. Thyagarajan, Digital Image Processing with Application to Digital Cinema (Focal Press, Elsevier Publication, Amsterdam, 2006)

    Google Scholar 

  32. A.V. Trushkin, Bit number distribution upon quantization of a multivariate random variable. Transl. Russ. Prob. Inf. Transm. 16(1), 76–79 (1980)

    MathSciNet  MATH  Google Scholar 

  33. A.V. Trushkin, Optimal bit allocation algorithm for quantizing a random vector. Transl. Russ. Probl. Inf. Transm. 17(3), 156–161 (1981)

    MATH  Google Scholar 

  34. D. Wei, Y. Li, Reconstruction of multidimensional bandlimited signals from multichannel samples in the linear canonical transform domain. IET Signal Process. 8(6), 647–657 (2014)

    Article  Google Scholar 

  35. D. Wei, Y. Li, Generalized sampling expansions with multiple sampling rates for lowpass and bandpass signals in the fractional fourier transform domain. IEEE Trans. Signal Process. 64(18), 4861–4874 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Wei, Image super-resolution reconstruction using the high-order derivative interpolation associated with fractional filter functions. IET Signal Process. 10(9), 1052–1061 (2016)

    Article  Google Scholar 

  37. C.Y. Wong et al., Notes on bit allocation in the time and frequency domains. IEEE Trans. Acoust. Speech Signal Process. ASSP–33(6), 1609–1610 (1985)

    Google Scholar 

  38. L. Ye, Z. Hou, Memory efficient multilevel discrete wavelet transform schemes for JPEG2000. IEEE Trans. Circuits Syst. Video Technol. 25(11), 1773–1785 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikrant Singh Thakur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, V.S., Thakur, K., Gupta, S. et al. Improved Optimum Nonnegative Integer Bit Allocation Algorithm Using Fuzzy Domain Variance Estimation and Refinement for the Wavelet-Based Image Compression. Circuits Syst Signal Process 38, 3880–3900 (2019). https://doi.org/10.1007/s00034-019-01084-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01084-3

Keywords

Navigation