Skip to main content

New Results on Stability of Discrete-Time Impulsive Systems with Time Delays

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is concerned with the stability of discrete-time impulsive systems with time delays. Some new stability criteria are provided by employing Lyapunov functions together with Razumikhin technique. Sufficient conditions are established to guarantee that even if impulsive perturbations occur frequently in some time domains, stability of discrete-time impulsive delay systems can still be achieved if the impulsive intervals with low impulse frequency satisfy certain conditions, which makes the obtained criteria more practical in this paper. Moreover, application to a class of discrete-time impulsive neural networks is also considered. Finally, two numerical examples and a practical example are given to illustrate the effectiveness and superiority of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Briat, A. Seuret, Convex dwell-time characterizations for uncertain linear impulsive systems. IEEE Trans. Autom. Control 57, 3241–3246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Briat, Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints. Automatica 74, 279–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Cao, J. Wang, Global asymptotic stability of a general class of recurrent neural networks with time varying delays. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50, 34–44 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. W.-H. Chen, W.X. Zheng, Global exponential stability of impulsive neural networks with variable delay: an LMI approach. IEEE Trans. Circuits Syst. I Regul. Pap. 56, 1248–1259 (2009)

    Article  MathSciNet  Google Scholar 

  5. S. Dashkovskiy, A. Mironchenko, Input-to-state stability of nonlinear impulsive systems. SIAM J. Control Optim. 51, 1962–1987 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics (Kluwer, Dordrecht, 1992)

    Book  MATH  Google Scholar 

  7. Q.-L. Han, Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica 41, 171–2176 (2005)

    MathSciNet  Google Scholar 

  8. Q.-L. Han, Y. Liu, F. Yang, Optimal communication network-based \(H_\infty \) quantized control with packet dropouts for a class of discrete-time neural networks with distributed time delay. IEEE Trans. Neural Netw. Learn Syst. 27, 426–434 (2016)

    Article  Google Scholar 

  9. J.P. Hespanha, D. Liberzon, A.R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems. Automatica 44, 2735–2744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. D.W.C. Ho, J. Liang, J. Lam, Global exponential stability of impulsive high-order BAM neural networks with time-varying delays. Neural Netw. 19, 1581–1590 (2006)

    Article  MATH  Google Scholar 

  11. L. Huang, Linear Algebria in Systems and Control Theory (Science Press, Beijing, 1984)

    Google Scholar 

  12. A. Khadra, X. Liu, X. Shen, Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses. IEEE Trans. Autom. Control 54, 923–928 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. O.M. Kwon, M.J. Park, J.H. Park, S.M. Lee, E.J. Cha, Improved delay-dependent stability criteria for discrete-time systems with time-varying delays. Circuits Syst. Signal Process. 32, 1949–1962 (2013)

    Article  MathSciNet  Google Scholar 

  14. V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations (World Scientific, Singapore, 1989)

    Book  Google Scholar 

  15. F. Li, C. Du, C. Yang, W. Gui, Passivity-based asynchronous sliding mode control for delayed singular Markovian jump systems. IEEE Trans. Autom. Control 63, 2715–2721 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. X. Li, Global exponential stability of impulsive delay systems with flexible impulse frequency. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2766260

    Google Scholar 

  17. X. Li, S. Song, Stabilization of delay systems: delay-dependent impulsive control. IEEE Trans. Autom. Control 62, 406–411 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Li, Impulsive synchronization of stochastic neural networks via controlling partial states. Neural Process. Lett. 46, 59–69 (2017)

    Article  Google Scholar 

  19. Y. Li, J. Lou, Z. Wang, F.E. Alsaadi, Synchronization of dynamical networks with nonlinearly coupling function under hybrid pinning impulsive controllers. J. Frankl. Inst. 355, 6520–6530 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Lin, Y. Zhang, Synchronization of stochastic impulsive discrete-time delayed networks via pinning control. Neurocomputing 286, 31–40 (2018)

    Article  Google Scholar 

  21. B. Liu, H.J. Marquezb, Razumikhin-type stability theorems for discrete delay systems. Automatica 43, 1219–1225 (2007)

    Article  MathSciNet  Google Scholar 

  22. B. Liu, D.J. Hill, Uniform stability of large-scale delay discrete impulsive systems. Int. J. Control 82, 228–240 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. X. Liu, Z. Zhang, Uniform asymptotic stability of impulsive discrete systems with time delay. Nonlinear Anal. 74, 4941–4950 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Liu, S. Zhao, Controllability for a class of linear time-varying impulsive systems with time delay in control input. IEEE Trans. Autom. Control 56, 395–399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Liu, Z. Wang, X. Liu, Stability analysis for a class of neutral-type neural networks with Markovian jumping parameters and mode-dependent mixed delays. Neurocomputing 94, 46–53 (2012)

    Article  Google Scholar 

  26. Y. Liu, Z. Wang, J. Liang, X. Liu, Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays. IEEE Trans. Neural Netw. 20, 1102–1116 (2009)

    Article  Google Scholar 

  27. J. Lu, D.W.C. Ho, J. Cao, A unified synchronization criterion for impulsive dynamical networks. Automatica 46, 1215–1221 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Lu, Z. Wang, J. Cao, D.W.C. Ho, J. Kurths, Pinning impulsive stabilization of nonlinear dynamical networks with time-varying delay. Int. J. Bifurc. Chaos 22, 1250176 (2012)

    Article  MATH  Google Scholar 

  29. M.S. Mahmoud, F.M. Al-Sunni, Y. Shi, Switched discrete-time delay systems: delay-dependent analysis and synthesis. Circuits Syst. Signal Process. 28, 735–761 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Naghshtabrizi, J.P. Hespanha, A.R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems. Syst. Control Lett. 57, 378–385 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. I.M. Stamova, G.T. Stamov, Lyapunov–Razumikhin method for impulsive functional differential equations and applications to the population dynamics. J. Comput. Appl. Math. 130, 163–171 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Tong, D. Qian, J. Fang, Joint estimation of parameters, states and time delay based on singular pencil model. Int. J. Innov. Comput. Inf. Control 12, 225–242 (2016)

    Google Scholar 

  33. Q. Wang, X.Z. Liu, Exponential stability for impulsive delay differential equations by Razumikhin method. J. Math. Anal. Appl. 309, 462–473 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Wang, J. Lu, J. Liang, J. Cao, M. Perc, Pinning synchronization of nonlinear coupled Lur’e networks under hybrid impulses. IEEE Trans. Circuits Syst. II Exp. Briefs (2018). https://doi.org/10.1109/TCSII.2018.2844883

    Google Scholar 

  35. T. Wu, F. Li, C. Yang, W. Gui, Event-based fault detection filtering for complex networked jump systems. IEEE/ASME Trans. Mechatron. 23, 497–505 (2018)

    Article  Google Scholar 

  36. X. Wu, Y. Zhang, Input-to-state stability of discrete-time delay systems with delayed impulses. Circuits Syst. Signal Process. 37, 2320–2356 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Xu, K. Teo, Stabilizability of discrete chaotic systems via unified impulsive control. Phys. Lett. A 374, 235–240 (2009)

    Article  MATH  Google Scholar 

  38. T. Yang, Impulsive Control Theory (Springer, Berlin, 2001)

    MATH  Google Scholar 

  39. M. Zhang, P. Shi, Z. Liu, J. Cai, H. Su, Dissipativity-based asynchronous control of discrete-time Markov jump systems with mixed time delays. Int. J. Robust Nonlinear Control 28, 2161–2171 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Zhang, P. Shi, Z. Liu, L. Ma, H. Su, \(H_{\infty }\) filtering for discrete-time switched fuzzy systems with randomly occurring time-varying delay and packet dropouts. Signal Process. 143, 320–327 (2018)

    Article  Google Scholar 

  41. M. Zhang, P. Shi, L. Ma, J. Cai, H. Su, Quantized feedback control of fuzzy Markov jump systems. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2842434

    Google Scholar 

  42. Y. Zhang, J. Sun, G. Feng, Impulsive control of discrete systems with time delay. IEEE Trans. Autom. Control 54, 830–834 (2009)

    Article  MathSciNet  Google Scholar 

  43. Y. Zhang, Exponential stability of impulsive discrete systems with time delays. Appl. Math. Lett. 25, 2290–2297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their constructive comments and suggestions which improved the quality of the paper. This work is supported by the Fundamental Research Funds for the Central Universities and the program of China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Zhang, Y. New Results on Stability of Discrete-Time Impulsive Systems with Time Delays. Circuits Syst Signal Process 38, 4572–4596 (2019). https://doi.org/10.1007/s00034-019-01089-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01089-y

Keywords