Skip to main content
Log in

Reconstructing DOA Estimation in the Second-Order Statistic Domain by Exploiting Matrix Completion

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

It is known that the performance of classical direction-of-arrival (DOA) estimators may be deteriorated considerably in the presence of non-uniform noise and low signal-to-noise ratio (SNR). Focusing on this issue, based on the matrix completion theory, a sparse reconstruction algorithm combining second-order statistical vectors and weighted L1-norm is developed in this paper. In the proposed method, the elastic regularization factor is firstly introduced into the matrix completion model to reconstruct the signal covariance matrix as a noise-free covariance matrix. In what follows, the obtained multi-vector issue associated with the noise-free covariance matrix can be recast as a single vector one by exploiting matrix sum-average operation in the second-order statistical domain. With the constructed single vector, DOA estimation can be complemented by employing the sparse reconstruction weighted L1-norm (WL1) approach. Numerical simulation results show that the proposed algorithm has improved angle estimation accuracy and resolution effectively under low SNR and can suppress the effect of noise non-uniformity significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.F. Cai, E.J. Candes, Z. Shen, A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. E.J. Candes, Y. Plan, Matrix completion with noise. Proc. IEEE 98(6), 925–936 (2009)

    Article  Google Scholar 

  3. E.J. Candes, B. Recht, Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. E.J. Candes, M.B. Wakin, S.P. Boyd, Enhancing sparsity by reweighted L1 minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Ghanbari, H. Zayyani, E. Yazdian, Joint DOA estimation and array calibration using multiple parametric dictionary learning. arXiv: 1707.07299

  6. M. Grant, S. Boyd, CVX: matlab software for disciplined convex programming 2013. http://www.cvxr.com/cvx. Accessed Aug 2013

  7. Z.Q. He, Z.P. Shi, L. Huang, Covariance sparsity-aware DOA estimation for nonuniform noise. Digit. Signal Process. 28(1), 75–81 (2014)

    Article  Google Scholar 

  8. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)

    Book  MATH  Google Scholar 

  9. R. Hu, Y. Fu, Z. Chen, J.W. Xu, J. Tang, Robust DOA estimation via sparse signal reconstruction with impulsive noise. IEEE Commun. Lett. 21(6), 1333–1336 (2017)

    Article  Google Scholar 

  10. X. Jiang, Z. Zhong, X. Liu, H.C. So, Robust matrix completion via alternating projection. IEEE Signal Process. Lett. 24(5), 579–583 (2017)

    Article  Google Scholar 

  11. B. Liao, S.C. Chan, L. Huang, C. Guo, Iterative methods for subspace and DOA estimation in nonuniform noise. IEEE Trans. Signal Process. 64(12), 3008–3020 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Liao, C. Guo, L. Huang, J. Wen, Matrix completion based direction-of-arrival estimation in nonuniform noise, in Proc. 20th IEEE International Conference on Digital Signal Processing (2016), pp. 66–69

  13. B. Liao, L. Huang, C. Guo, H.C. So, New approaches to direction-of-Arrival estimation with sensor arrays in unknown nonuniform noise. IEEE Sens. J. 16(24), 8982–8989 (2016)

    Article  Google Scholar 

  14. M. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, Application of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Malioutov, M. Cetin, A.S. Willsky, A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Mao, L. Xiong, L. Jiao, T. Feng, S.K. Yeung, A novel riemannian metric based on riemannian structure and scaling information for fixed low-rank matrix completion. IEEE Trans. Cybern. 47(5), 1299–1312 (2017)

    Article  Google Scholar 

  17. B. Ottersten, P. Stoica, R. Roy, Covariance matching estimation techniques for array signal processing applications. Digit. Signal Process. 8(3), 185–210 (1998)

    Article  Google Scholar 

  18. P. Pal, P.P. Vaidyanathan, A grid-less approach to underdetermined direction of arrival estimation via low rank matrix denoising. IEEE Signal Process. Lett. 21(6), 737–741 (2014)

    Article  Google Scholar 

  19. M. Pesavento, A.B. Gershman, Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise. IEEE Trans. Signal Process. 49(7), 1310–1324 (2002)

    Article  Google Scholar 

  20. R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  21. R. Sun, Z.Q. Luo, Guaranteed matrix completion via non-convex factorization. IEEE Trans. Inf. Theory 62(11), 6535–6579 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Sun, A.P. Petropulu, Waveform design for MIMO radars with matrix completion. IEEE J. Sel. Top. Signal Process. 9(8), 1400–1414 (2015)

    Article  Google Scholar 

  23. Y. Tian, H. Shi, H. Xu, DOA estimation in the presence of unknown nonuniform noise with coprime array. Electron. Lett. 53(2), 113–115 (2016)

    Article  Google Scholar 

  24. Y. Tian, X. Sun, S. Zhao, DOA and power estimation using a sparse representation of second-order statistics vector and L0-norm approximation. Signal Process. 105, 98–108 (2014)

    Article  Google Scholar 

  25. H.L. Van Trees, Detection, Estimation, and Modulation Theory, Optimum Array Processing, Part IV (Wiley, New York, 2002)

    Google Scholar 

  26. B. Wang, Y. Gu, W. Wang, Off-grid direction-of-arrival estimation based on steering vector approximation. Circuits Syst. Signal Process. 38(3), 1287–1300 (2019)

    Article  Google Scholar 

  27. J. Yang, Y. Yang, G. Liao, B. Lei, A super-resolution direction of arrival estimation algorithm for coprime array via sparse bayesian learning inference. Circuits Syst. Signal Process. 37(5), 1907–1934 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. J.H. Yin, T.Q. Chen, Direction-of-arrival estimation using a sparse representation of array covariance vectors. IEEE Trans. Signal Process. 59(9), 4489–4493 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Zamani, H. Zayyani, F. Marvasti, An iterative dictionary learning-based algorithm for DOA estimation. IEEE Commun. Lett. 20(9), 1784–1787 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under Grant 61301258, 61271379, China Postdoctoral Science Foundation Funded Project under Grant No. 2016M590218 and the 111 Project (B18039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The Selection of η

Appendix: The Selection of η

The vectorization of the estimate error of the noise-free covariance matrix denoted by \( \Delta {\mathbf{R}}_{0} \varvec{ = }{\hat{\mathbf{R}}}_{0} \varvec{ - }{\mathbf{R}}_{0} \) is subject to the following distribution [17]:

$$ \text{vec}\left( {\Delta {\mathbf{R}}_{0} } \right) \sim \text{AsN}\left( {0,\frac{1}{L}{\mathbf{R}}_{0}^{T} \otimes {\mathbf{R}}_{0} } \right) $$
(30)

where \( \text{AsN}\left( \cdot \right) \) denotes the asymptotically normal distribution and \( {\hat{\mathbf{R}}}_{0} \) can be obtained by solving (18).

As illustrated above, the vector \( {\varvec{\Upsilon}} \) can be obtained by using sum-average operation on \( {\mathbf{R}}_{0} \). Consequently, it indicates a linear relationship between \( \Delta {\varvec{\Upsilon}} \) and \( \text{vec}\left( {\Delta {\mathbf{R}}_{0} } \right) \), i.e.,

$$ \Delta {\varvec{\Upsilon}} = {\hat{\mathbf{\varvec{\Upsilon}}}}\varvec{ - }{\varvec{\Upsilon}} = {\mathbf{G}} \times \text{vec}\left( {\Delta {\mathbf{R}}_{0} } \right) $$
(31)

where \( {\hat{\mathbf{\varvec{\Upsilon}}}} \) is the \( {\varvec{\Upsilon}} \) estimate with \( L \) snapshots, \( {\mathbf{G}} \in \left( {2M - 1} \right) \times M^{2} \) is a linear transformation matrix, and \( \text{rank}\left( {\mathbf{G}} \right) = 2M - 1 \) [24].

Combining (30) and (31), we have:

$$ {\hat{{\varvec{\Upsilon}}}} - {\tilde{\mathbf{B}}}\left( {\varvec{\Psi}} \right){\tilde{\mathbf{P}}} \sim \text{AsN}\left( {0,\frac{1}{L}{\mathbf{G}}\left( {{\mathbf{R}}_{0}^{T} \otimes {\mathbf{R}}_{0} } \right){\mathbf{G}}^{T} } \right) $$
(32)

that is, \( {\hat{{\varvec{\Upsilon}}}} - {\tilde{\mathbf{B}}}\left( {\varvec{\Psi}} \right){\tilde{\mathbf{P}}} \) satisfies the asymptotically normal distribution with mean 0 and variance \( \frac{1}{L}{\mathbf{G}}\left( {{\mathbf{R}}_{0}^{T} \otimes {\mathbf{R}}_{0} } \right){\mathbf{G}}^{T} \).

Furthermore, (32) indicates that

$$ {\mathbf{H}}^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-0pt} 2}}} \left( {{\hat{{\varvec{\Upsilon}}}} - {\tilde{\mathbf{B}}}\left( {\varvec{\Psi}} \right){\tilde{\mathbf{P}}}} \right) \sim \text{AsN}\left( {0,{\mathbf{I}}_{2M - 1} } \right) $$
(33)

where \( {\mathbf{H}}^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-0pt} 2}}} \) is the Hermitian square root of \( {\mathbf{H}}^{{{ - }1}} \),

$$ {\mathbf{H}} = \frac{1}{L}{\mathbf{G}}\left( {{\mathbf{R}}_{0}^{T} \otimes {\mathbf{R}}_{0} } \right){\mathbf{G}}^{T} $$
(34)

According to the normal distribution theory, (33) can be reshaped as:

$$ \left\| {{\mathbf{H}}^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-0pt} 2}}} \left( {{\hat{{\varvec{\Upsilon}}}} - {\tilde{\mathbf{B}}}\left( {\varvec{\Psi}} \right){\tilde{\mathbf{P}}}} \right)} \right\|_{2}^{2} \sim {As\chi }^{2} \left( {2M - 1} \right) $$
(35)

where \( {As\chi }^{2} \left( {2M - 1} \right) \) denotes the asymptotic Chi-square distribution with \( 2M - 1 \) degrees of freedom.

Following (35), the error parameter factor \( \eta \) can be obtained properly by the Chi-square distribution function with probability \( 1 - \bar{p} \) and \( 2M - 1 \) degrees of freedom, where \( \bar{p} \) is a probability value. In general, \( \bar{p} \) is generally determined by simulation experiments [24]. With the analysis in [24], \( \bar{p} = 0.01 \) would be an acceptable compromise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Wang, H., Zhu, S. et al. Reconstructing DOA Estimation in the Second-Order Statistic Domain by Exploiting Matrix Completion. Circuits Syst Signal Process 38, 4855–4873 (2019). https://doi.org/10.1007/s00034-019-01093-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01093-2

Keywords

Navigation