Skip to main content

Finite-Time Stability of Homogeneous Impulsive Positive Systems of Degree One

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the finite-time stability (FTS) of a special class of hybrid systems, namely homogeneous impulsive positive systems of degree one. By using max-separable Lyapunov functions together with average impulsive interval method, a sufficient FTS criterion is obtained for homogeneous impulsive positive systems of degree one. It should be noted that it’s the first time that the FTS result for homogeneous impulsive positive systems of degree one is given. Finally, some numerical examples are provided to demonstrate the effectiveness of the presented theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Amato, R. Ambrosino, M. Ariola, C. Cosentino, G.D. Tommasi, Finite-Time Stability and Control (Springer, London, 2014)

    MATH  Google Scholar 

  2. F. Amato, R. Ambrosino, C. Cosentino, G.D. Tommasi, Finite-time stabilization of impulsive dynamical linear systems. Nonlinear Anal. Hybrid Syst. 5(1), 89–101 (2011)

    MathSciNet  MATH  Google Scholar 

  3. F. Amato, M. Ariola, C. Cosentino, Finite-time stabilization via dynamic output feedback. Automatica 42(2), 337–342 (2006)

    MathSciNet  MATH  Google Scholar 

  4. F. Amato, G.D. Tommasi, A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems. Automatica 49(8), 2546–2550 (2013)

    MathSciNet  MATH  Google Scholar 

  5. R. Ambrosino, F. Calabrese, C. Cosentino, G.D. Tommasi, Sufficient conditions for finite-time stability of impulsive dynamical systems. IEEE Trans. Autom. Control 54(4), 861–865 (2009)

    MathSciNet  MATH  Google Scholar 

  6. M.U. Akhmet, M. Beklioglu, T. Ergenc, V.I. Tkachenko, An impulsive ratio-dependent predator-prey system with diffusion. Nonlinear Anal. Real World Appl. 7(5), 1255–1267 (2006)

    MathSciNet  MATH  Google Scholar 

  7. G. Ballinger, X. Liu, Existence and uniqueness results for impulsive delay differential equations. Dyn. Contin. Discrete Impuls. Syst. 5, 579–591 (1999)

    MathSciNet  MATH  Google Scholar 

  8. L. Benvenuti, L. Farina, Positive and compartmental systems. IEEE Trans. Autom. Control 47(2), 370–373 (2002)

    MathSciNet  MATH  Google Scholar 

  9. C. Briat, Dwell-time stability and stabilization conditions for linear positive impulsive and switched systems. Nonlinear Anal. Hybrid Syst. 24, 198–226 (2017)

    MathSciNet  MATH  Google Scholar 

  10. W. Chen, W. Zheng, Exponential stability of nonlinear time-delay systems with delayed impulse effects. Automatica 47(5), 1075–1083 (2011)

    MathSciNet  MATH  Google Scholar 

  11. J.J. Distefano III, K.C. Wilson, M. Jang, P.H. Mak, Identification of the dynamics of thyroid hormone metabolism. Automatica 11(2), 149–159 (1975)

    MATH  Google Scholar 

  12. W. Elloumi, D. Mehdi, M. Chaabane, G. Hashim, Exponential stability criteria for positive systems with time-varying delay: a delay decomposition technique. Circuits Syst. Signal Process. 35(5), 1545–1561 (2016)

    MATH  Google Scholar 

  13. L. Farina, S. Rinaldi, Positive Linear Systems: Theory and Applications (Wiley, New York, 2000)

    MATH  Google Scholar 

  14. H.R. Feyzmahdavian, T. Charalambous, M. Johansson, Exponential stability of homogeneous positive systems of degree one with time-varying delays. IEEE Trans. Autom. Control 59(6), 1594–1599 (2014)

    MathSciNet  MATH  Google Scholar 

  15. W.M. Haddada, V. Chellaboinab, Stability theory for nonnegative and compartmental dynamical systems with time delay. Syst. Control Lett. 51, 355–361 (2004)

    MathSciNet  Google Scholar 

  16. M. Hu, Y. Wang, J. Xiao, On finite-time stability and stabilization of positive systems with impulses. Nonlinear Anal. Hybrid Syst. 31, 275–291 (2019)

    MathSciNet  MATH  Google Scholar 

  17. M. Hu, J. Xiao, R. Xiao, W. Chen, Impulsive effects on the stability and stabilization of positive systems with delays. J. Franklin Inst. 354(10), 4034–4054 (2017)

    MathSciNet  MATH  Google Scholar 

  18. L. Lee, Y. Liu, J. Liang, X. Cai, Finite time stability of nonlinear impulsive systems and its applications in sampled-data systems. ISA Trans. 57, 172–178 (2015)

    Google Scholar 

  19. P.D. Leenheer, D. Aeyels, Stabilization of positive linear systems. Syst. Control Lett. 44(4), 259–271 (2001)

    MathSciNet  MATH  Google Scholar 

  20. X. Li, D.W.C. Ho, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems. Automatica 99, 361–368 (2019)

    MathSciNet  MATH  Google Scholar 

  21. X. Li, S. Song, Stabilization of delay systems: delay-dependent impulsive control. IEEE Trans. Autom. Control 62(1), 406–411 (2017)

    MathSciNet  MATH  Google Scholar 

  22. X. Li, J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses. Automatica 64, 63–69 (2016)

    MathSciNet  MATH  Google Scholar 

  23. L. Liu, X. Cao, Z. Fu, S. Song, S. Xing, Finite-time control of uncertain fractional-order positive impulsive switched systems with mode-dependent average dwell time. Circuits Syst. Signal Process. 37(9), 3739–3755 (2018)

    MathSciNet  Google Scholar 

  24. L. Liu, J. Sun, Finite-time stabilization of linear systems via impulsive control. Int. J. Control 81(6), 905–909 (2008)

    MathSciNet  MATH  Google Scholar 

  25. X. Liu, Stability results for impulsive differential systems with applications to population growth models. Dyn. Stab. Syst. 9(2), 163–174 (1994)

    MathSciNet  MATH  Google Scholar 

  26. X. Liu, W. Yu, L. Wang, Stability analysis of positive systems with bounded time-varying delays. IEEE Trans. Circuits Syst. II Exp. Briefs 56(7), 600–604 (2009)

    Google Scholar 

  27. J. Lu, D.W.C. Ho, J. Cao, A unified synchronization criterion for impulsive dynamical networks. Automatica 46(7), 1215–1221 (2010)

    MathSciNet  MATH  Google Scholar 

  28. X. Lv, X. Li, Finite time stability and controller design for nonlinear impulsive sampled-data systems with applications. ISA Trans. 70, 30–36 (2017)

    Google Scholar 

  29. Y. Ma, B. Wu, Y. Wang, Finite-time stability and finite-time boundedness of fractional order linear systems. Neurocomputing 173, 2076–2082 (2016)

    Google Scholar 

  30. Y. Ma, B. Wu, Y. Wang, Input-output finite time stability of fractional order linear systems with \( 0 < \alpha < 1 \). Trans. Inst. Meas. Control 39(5), 653–659 (2017)

    Google Scholar 

  31. O. Mason, M. Verwoerd, Observations on the stability properties of cooperative systems. Syst. Control Lett. 58(6), 461–467 (2009)

    MathSciNet  MATH  Google Scholar 

  32. S.G. Nersesov, W.M. Haddadb, Finite-time stabilization of nonlinear impulsive dynamical systems. Nonlinear Anal. Hybrid Syst. 2, 832–845 (2008)

    MathSciNet  MATH  Google Scholar 

  33. P.H.A. Ngoc, Stability of positive differential systems with delay. IEEE Trans. Autom. Control 58(1), 203–209 (2013)

    MathSciNet  MATH  Google Scholar 

  34. M.A. Rami, F. Tadeo, Controller synthesis for positive linear systems with bounded controls. IEEE Trans. Circuits Syst. II Exp. Briefs 54(2), 151–155 (2007)

    Google Scholar 

  35. H.L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems (American Mathematical Society, Rhode Island, 1995)

    MATH  Google Scholar 

  36. R.J. Smith, L.M. Wahl, Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects. Bull. Math. Biol. 67(4), 783–813 (2005)

    MathSciNet  MATH  Google Scholar 

  37. W. Tao, Y. Liu, J. Lu, Stability and \( {L}_{2}\)-gain analysis for switched singular linear systems with jumps. Math. Methods Appl. Sci. 40(3), 589–599 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Y. Wang, J. Zhang, M. Liu, Exponential stability of impulsive positive systems with mixed time-varying delays. IET Control Theory Appl. 8(15), 1537–1542 (2014)

    MathSciNet  Google Scholar 

  39. X. Wu, Y. Zhang, Input-to-state stability of discrete-time delay systems with delayed impulses. Circuits Syst. Signal Process. 37(6), 2320–2356 (2018)

    MathSciNet  MATH  Google Scholar 

  40. H. Yang, Y. Zhang, Stability of positive delay systems with delayed impulses. IET Control Theory Appl. 12(2), 194–205 (2018)

    MathSciNet  Google Scholar 

  41. H. Yang, Y. Zhang, Exponential stability of homogeneous impulsive positive delay systems of degree one. Int. J. Control (2019). https://doi.org/10.1080/00207179.2019.1584335

    Article  Google Scholar 

  42. T. Yang, Impulsive Control Theory (Springer, Berlin, 2001)

    MATH  Google Scholar 

  43. J. Zhang, X. Zhao, Y. Chen, Finite-time stability and stabilization of fractional order positive switched systems. Circuits Syst. Signal Process. 35(7), 2450–2470 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Q. Zhu, Y. Liu, J. Lu, J. Cao, On the optimal control of Boolean control networks. SIAM J. Control Opti. 56(2), 1321–1341 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Q. Zhu, Y. Liu, J. Lu, J. Cao, Further results on the controllability of Boolean control networks. IEEE Trans. Autom. Control 64(1), 440–442 (2019)

    MathSciNet  MATH  Google Scholar 

  46. S. Zhu, J. Lou, Y. Liu, Y. Li, Z. Wang, Event-triggered control for the stabilization of probabilistic Boolean control networks. Complexity 2018, 9259348, 7p (2018)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their constructive comments and suggestions which improved the quality of this paper. This work is supported by the Fundamental Research Funds for the Central Universities (Grant No. 0800219386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhang, Y. Finite-Time Stability of Homogeneous Impulsive Positive Systems of Degree One. Circuits Syst Signal Process 38, 5323–5341 (2019). https://doi.org/10.1007/s00034-019-01124-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01124-y

Keywords