Skip to main content
Log in

On the Approximations of CFOA-Based Fractional-Order Inverse Filters

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, three novel fractional-order CFOA-based inverse filters are introduced. The inverse low-pass, high-pass and band-pass responses are investigated using different approximation techniques. The studied approximations for the fractional-order Laplacian operator are the continued fraction expansion and Matsuda approximations. A comparison is held between the ideal filter characteristic and the realized ones from each approximation. A comparative study is summarized between the proposed circuits with some of the released inverse filters introduced in the literature. Foster-I realization is employed to transform the obtained fractional-order capacitor (FOC) from the investigated approximations into an RC parallel–series circuit topology. Additionally, to discuss the sensitivity of the FOC to component tolerances, Monte Carlo simulations are carried out which shows immunity to the component tolerances. Numerical examples, as well as SPICE circuit simulations, have been introduced to validate the theoretical discussions. Finally, the three CFOA inverse filters are tested experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. A. AboBakr, L.A. Said, A.H. Madian, A.S. Elwakil, A.G. Radwan, Experimental comparison of integer/fractional-order electrical models of plant. AEU Int. J. Electron. Commun. 80, 1–9 (2017)

    Article  Google Scholar 

  2. M.T. Abuelma’atti, Identification of cascadable current-mode filters and inverse-filters using single FTFN. Frequenz 54(11–12), 284–289 (2000)

    Google Scholar 

  3. A.S. Ali, A.G. Radwan, A.M. Soliman, Fractional order butterworth filter: active and passive realizations. IEEE J. Emerg. Sel. Top. Circ. Syst. 3(3), 346–354 (2013)

    Article  Google Scholar 

  4. D.R. Bhaskar, M. Kumar, P. Kumar, Fractional order inverse filters using operational amplifier. Analog Integr. Circ. Signal Process. 97(1), 149–158 (2018)

    Article  Google Scholar 

  5. G. Carlson, C. Halijak, Approximation of fractional capacitors (1/s)\(^{\wedge }\)(1/n) by a regular Newton process. IEEE Trans. Circ. Theory 11(2), 210–213 (1964)

    Article  Google Scholar 

  6. B. Chipipop, W. Surakampontorn, Realisation of current-mode FTFN-based inverse filter. Electron. Lett. 35(9), 690–692 (1999)

    Article  Google Scholar 

  7. P. Duffett-Smith, Synthesis of lumped element, distributed, and planar filters. J. Atmos. Terr. Phys. 52(9), 811–812 (1990)

    Article  Google Scholar 

  8. T.J. Freeborn, A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Top. Circ. Syst. 3(3), 416–424 (2013)

    Article  Google Scholar 

  9. T.J. Freeborn, A.S. Elwakil, B. Maundy, Approximated fractional-order inverse Chebyshev lowpass filters. Circ. Syst. Signal Process. 35(6), 1973–1982 (2015)

    Article  MathSciNet  Google Scholar 

  10. T.J. Freeborn, B. Maundy, A. Elwakil, Fractional-step Tow-Thomas biquad filters. Nonlinear Theory Appl. IEICE 3(3), 357–374 (2012)

    Article  Google Scholar 

  11. K. Garg, R. Bhagat, B. Jaint, A novel multifunction modified CFOA based inverse filter, in 2012 IEEE 5th India International Conference on Power Electronics (IICPE) (IEEE, 2012), pp. 1–5

  12. S. Gupta, D. Bhaskar, R. Senani, A. Singh, Inverse active filters employing CFOAS. Electr. Eng. 91(1), 23 (2009)

    Article  Google Scholar 

  13. S. Gupta, D. Bhaskar, R. Senani, New analogue inverse filters realised with current feedback OP-AMPS. Int. J. Electron. 98(8), 1103–1113 (2011)

    Article  Google Scholar 

  14. E.M. Hamed, A.M. AbdelAty, L.A. Said, A.G. Radwan, Effect of different approximation techniques on fractional-order KHN filter design. Circ. Syst. Signal Process. 37(12), 5222–5252 (2018)

    Article  Google Scholar 

  15. N. Herencsar, A. Lahiri, J. Koton, K. Vrba, Realizations of second-order inverse active filters using minimum passive components and DDCCS, in Proceedings of 33rd International Conference on Telecommunications and Signal Processing-TSP 2010 (2010), pp. 38–41

  16. N. Herencsar, R. Sotner, A. Kartci, K. Vrba, A novel pseudo-differential integer/fractional-order voltage-mode all-pass filter, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2018), pp. 1–5

  17. S.M. Ismail, L.A. Said, A.A. Rezk, A.G. Radwan, A.H. Madian, M.F. Abu-ElYazeed, A.M. Soliman, Biomedical image encryption based on double-humped and fractional logistic maps, in 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST) (IEEE, 2017), pp. 1–4

  18. B. Krishna, Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)

    Article  MathSciNet  Google Scholar 

  19. A. Leuciuc, Using nullors for realisation of inverse transfer functions and characteristics. Electron. Lett. 33(11), 949–951 (1997)

    Article  Google Scholar 

  20. G. Maione, Thiele’s continued fractions in digital implementation of noninteger differintegrators. Signal Image Video Process. 6(3), 401–410 (2012)

    Article  Google Scholar 

  21. K. Matsuda, H. Fujii, H(infinity) optimized wave-absorbing control—analytical and experimental results. J. Guid. Control Dyn. 16(6), 1146–1153 (1993)

    Article  Google Scholar 

  22. R. Pandey, N. Pandey, T. Negi, V. Garg, CDBA based universal inverse filter. ISRN Electronics (2013)

  23. V. Patil, R. Sharma, Novel inverse active filters employing CFOAS. Int. J. Sci. Res. Dev. 3(7), 359–360 (2015)

    Google Scholar 

  24. A. Radwan, A. Soliman, A. Elwakil, A. Sedeek, On the stability of linear systems with fractional-order elements. Chaos Solitons Fractals 40(5), 2317–2328 (2009)

    Article  Google Scholar 

  25. A.G. Radwan, A.M. Soliman, A.S. Elwakil, First-order filters generalized to the fractional domain. J. Circ. Syst. Comput. 17(01), 55–66 (2008)

    Article  Google Scholar 

  26. A.G. Radwan, A.S. Elwakil, A.M. Soliman, On the generalization of second-order filters to the fractional-order domain. J. Circ. Syst. Comput. 18(02), 361–386 (2009)

    Article  Google Scholar 

  27. L.A. Said, S.M. Ismail, A.G. Radwan, A.H. Madian, M.F.A. El-Yazeed, A.M. Soliman, On the optimization of fractional order low-pass filters. Circ. Syst. Signal Process. 35(6), 2017–2039 (2016)

    Article  MathSciNet  Google Scholar 

  28. L.A. Said, A.G. Radwan, A.H. Madian, A.M. Soliman, Fractional-order oscillator based on single CCII, in 2016 39th International Conference on Telecommunications and Signal Processing (TSP) (IEEE, 2016), pp. 603–606

  29. L.A. Said, A.G. Radwan, A.H. Madian, A.M. Soliman, Fractional order oscillator design based on two-port network. Circ. Syst. Signal Process. 35(9), 3086–3112 (2016)

    Article  MathSciNet  Google Scholar 

  30. W.S. Sayed, S.M. Ismail, L.A. Said, A.G. Radwan, On the fractional order generalized discrete maps, in Mathematical Techniques of Fractional Order Systems (Elsevier, 2018), pp. 375–408

  31. N.A. Shah, M. Quadri, S.Z. Iqbal, High output impedance current-mode allpass inverse filter using CDTA. Indian J. Pure Appl. Phys. 46, 893–896 (2008)

    Google Scholar 

  32. N.A. Shah, M.F. Rather, Realization of voltage-mode CCII-based allpass filter and its inverse version. Indian J. Pure Appl. Phys. 44(3), 269–271 (2006)

    Google Scholar 

  33. A. Sharma, A. Kumar, P. Whig, On the performance of CDTA based novel analog inverse low pass filter using 0.35 \(\upmu \)m CMOS parameter. Int. J. Sci. Technol. Manag. 4(1), 594–601 (2015)

    Google Scholar 

  34. A.K. Singh, A. Gupta, R. Senani, Otra-based multi-function inverse filter configuration. Adv. Electr. Electron. Eng. 15(5), 846–856 (2018)

    Google Scholar 

  35. T. Tsukutani, Y. Sumi, N. Yabuki, Electronically tunable inverse active filters employing otas and grounded capacitors. Int. J. Electron. Lett. 4(2), 166–176 (2016)

    Article  Google Scholar 

  36. H.-Y. Wang, C.-T. Lee, Using nullors for realisation of current-mode FTFN-based inverse filters. Electron. Lett. 35(22), 1889–1890 (1999)

    Article  Google Scholar 

  37. H.-Y. Wang, S.-H. Chang, T.-Y. Yang, P.-Y. Tsai et al., A novel multifunction CFOA-based inverse filter. Circ. Syst. 2, 14–17 (2011)

    Article  Google Scholar 

  38. D. Yousri, A.M. AbdelAty, L.A. Said, A. AboBakr, A.G. Radwan, Biological inspired optimization algorithms for cole-impedance parameters identification. AEU Int. J. Electron. Commun. 78, 79–89 (2017)

    Article  Google Scholar 

  39. E. Yuce, S. Tokat, S. Minaei, O. Cicekoglu, Low-component-count insensitive current-mode and voltage-mode PID, PI and PD controllers. Frequenz 60(3–4), 65–70 (2006)

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Science and Technology Development Fund (STDF) for funding the project \(\#\) 25977 and Nile University for facilitating all procedures required to complete this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobna A. Said.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamed, E.M., Said, L.A., Madian, A.H. et al. On the Approximations of CFOA-Based Fractional-Order Inverse Filters. Circuits Syst Signal Process 39, 2–29 (2020). https://doi.org/10.1007/s00034-019-01155-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01155-5

Keywords

Navigation