Skip to main content

A New Fractional-Order Mask for Image Edge Detection Based on Caputo–Fabrizio Fractional-Order Derivative Without Singular Kernel

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, we consider the Caputo–Fabrizio fractional-order derivative to generalize the first-order Sobel operator. The resulting fractional mask is used to carry out edge analysis of medical images. The implementation of this method will allow enhancing the study, and the monitoring of diseases such as breast cancer, benign cyst, and breast calcifications, among others, to properly treat these diseases. The experimental results showed that the proposed operator gives superior performance over conventional integer-order operators because it can detect more edge details feature of the medical images, as well as it is more robust to noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Amoako-Yirenkyi, J. Appati, I. Kwame, A new construction of a fractional derivative mask for image edge analysis based on Riemann–Liouville fractional derivative. Adv. Differ. Equ. 2016(1), 1–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Arbelaez, C. Fowlkes, D. Martin. The Berkeley Segmentation Dataset and Benchmark. Retrieved from: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/ (2007)

  3. A. Atangana, K.M. Owolabi, New numerical approach for fractional differential equations. Math. Model. Nat. Phenom. 13(1), 1–17 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Canny. A Computational approach to edge detection, in IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), (1986), pp. 679–698

    Article  Google Scholar 

  5. M. Caputo, M. Fabricio, A New definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  6. K. Chong. Clinical Review: Benign breast disease. Retrieved from https://www.gponline.com/clinical-review-benign-breast-disease/womens-health/breast-disorders/article/1336658 (2015)

  7. C. Corso, A. Dosoretz. Early-Stage Breast Cancer. Retrieved from http://www.cancernetwork.com/slideshows/slide-show-early-stage-breast-cancer (2012)

  8. H. Chun, Y. Yong-Qiang, B. Jiang, X. Zhou, A novel edge detection method based on fractional-order calculus mask. Acta Automatica Sinica 38(5), 776–787 (2012)

    Article  MathSciNet  Google Scholar 

  9. E. Davies, Design of optimal Gaussian operators in small neighbourhoods. Image Vis. Comput. 5(3), 199–205 (1987)

    Article  MathSciNet  Google Scholar 

  10. C.-X. Deng, G.-B. Wang, X.-R. Yang. Image edge detection algorithm based on improved Canny operator, in International Conference on Wavelet Analysis and Pattern Recognition, Tianjin (2013), pp. 168–172

  11. B. Di Muzio, Ruptured anterior communicating artery aneurysm. Retrieved from: https://radiopaedia.org/cases/ruptured-anterior-communicating-artery-aneurysm-1 (2015)

  12. R. Duda, P. Hart, Object enhancement and extraction, in Picture Processing and Psychopictorics, vol. 1, ed. by B. Lipkin, A. Rosenfeld (Academic Press, New York, 1970), pp. 75–149

    Google Scholar 

  13. R. Egan, R. Mosteller, Breast cancer mammography patterns. Am. Cancer Soc. 40(5), 2087–2090 (1977)

    Google Scholar 

  14. W. Frei, C. Chung-Ching, Fast boundary detection: a generalization and a new algorithm. IEEE Trans. Comput. C–26, 988–998 (1977)

    Article  Google Scholar 

  15. C. Gao, J. Zhou, J. Hu, F. Lang, Edge detection of colour image based on quaternion fractional differential. IET Image Process. 5(3), 261–272 (2011)

    Article  MathSciNet  Google Scholar 

  16. M. Goldbaum, STARE (STructured Analysis of the Retina) Project. Retrieved from: http://cecas.clemson.edu/~ahoover/stare/, (2004)

  17. M. Hacini, A. Hacini, H. Akdag, F. Hachouf, A 2D-fractional derivative mask for image feature edge detection, in International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Fez, vol 1, pp. 1–6 (2017)

  18. R. Haralick, Digital step edges from zero crossing of second directional derivatives. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–6(1), 58–68 (1984)

    Article  Google Scholar 

  19. O.S. Iyiola, E.O. Asante-Asamani, B.A. Wade, A real distinct poles rational approximation of generalized Mittag–Leffler functions and their inverses: applications to fractional calculus. J. Comput. Appl. Math. 330, 307–317 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Kamil, Edge detection for Diabetic Retinopathy using fuzzy logic. Iraqi J. Sci. 55, 1395–1401 (2011)

    Google Scholar 

  21. P. Kellman, E. McVeigh, Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 54(6), 1439–1447 (2005)

    Article  Google Scholar 

  22. P. Khaire, N. Thakur, A fuzzy set approach for edge detection. Int. J. Image Process. (IJIP) 6(6), 403–412 (2012)

    Google Scholar 

  23. R. Kirsch, Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 4(3), 315–328 (1971)

    Article  Google Scholar 

  24. G. Kruger, Benign breast calcifications. Retrieved from https://radiopaedia.org/cases/benign-breast-calcifications (2012)

  25. A. Kumar, S. Kumar, S.P. Yan, Residual power series method for fractional diffusion equations. Fundamenta Informaticae 151(1–4), 213–230 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Kumar, A. Kumar, D. Baleanu, Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burger’s equations arise in propagation of shallow water waves. Nonlinear Dyn. 85(2), 699–715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Kumar, A. Kumar, Z.M. Odibat, A nonlinear fractional model to describe the population dynamics of two interacting species. Math. Methods Appl. Sci. 40(11), 4134–4148 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Lauric, E. Miller, M. Baharoglu, A. Malek, Rupture status discrimination in intracranial aneurysms using the centroid-radii model. IEEE Trans. Bio-med. Eng. 58(10), 2895–2903 (2011)

    Article  Google Scholar 

  29. D. Marr, E. Hildreth, Theory of edge detection. Proc. R. Soc. Lond. Ser. B Biol. Sci. 207(1167), 187–217 (1980)

  30. D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in Proceedings Eighth IEEE International Conference on Computer Vision (ICCV), vol 2, Vancouver, (2001), pp. 416–423

  31. B. Mathieu, P. Melchior, A. Oustaloup, Ch. Ceyral, Fractional differentiation for edge detection. Signal Process. 83(11), 2421–2432 (2003)

    Article  MATH  Google Scholar 

  32. R. Moreno, D. Puig, C. Julia, M. Garcia, A new methodology for evaluation of edge detectors, in 16th IEEE International Conference on Image Processing (ICIP), Cairo, (2009), pp. 2157–2160

  33. A. Nandal, H. Gamboa-Rosales, A. Dhaka, Image edge detection using fractional calculus with feature and contrast enhancement. Circuits Syst. Signal Process. 37(9), 3946–3972 (2018)

    Article  MATH  Google Scholar 

  34. A.D. Obembe, S.A. Abu-Khamsin, M.E. Hossain, K. Mustapha, Analysis of subdiffusion in disordered and fractured media using a Grünwald–Letnikov fractional calculus model. Comput. Geosci. 1, 1–20 (2018)

    Article  MATH  Google Scholar 

  35. K.M. Owolabi, A. Atangana, High-order solvers for space-fractional differential equations with Riesz derivative. Discrete Contin. Dyn. Syst. S 12(3), 567–590 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. K.M. Owolabi, A. Atangana, Robustness of fractional difference schemes via the Caputo subdiffusion–reaction equations. Chaos Solitons Fractals 111, 119–127 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Padmavathi P. Subashini, P. Lavanya, Performance evaluation of the various edge detectors and filters for the noisy IR images, in Proceedings of the 2nd WSEAS International Conference on Sensors, and Signals and Visualization, Imaging and Simulation and Materials Science, Baltimore, (2009), pp. 199–203

  38. S.C. Pandey, The Lorenzo-Hartley’s function for fractional calculus and its applications pertaining to fractional order modelling of anomalous relaxation in dielectrics. Comput. Appl. Math. 37(3), 2648–2666 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  40. D. Poobathy, M. Chezian, Edge detection operators: peak signal to noise ratio based comparison. Int. J. Image Graph. Signal Process. 6, 55–61 (2014)

    Article  Google Scholar 

  41. J. Prewitt, Object enhancement and extraction, in Picture Processing and Psychopictorics, vol. 1, ed. by B. Lipkin, A. Rosenfeld (Academic Press, New York, 1970), pp. 75–149

    Google Scholar 

  42. M. Prieto, A. Allen, A similarity metric for edge images. IEEE Trans. PAMI 10(25), 1265–1273 (2003)

    Article  Google Scholar 

  43. L. Roberts, Machine Perception of Three-Dimensional Solids, Thesis (Ph.D.) Massachusetts Institute of Technology, Dept. of Electrical Engineering (1963)

  44. G. Robinson, Edge detection by compass gradient masks. Comput. Graph. Image Process. 6(5), 492–501 (1977)

    Article  Google Scholar 

  45. K.M. Saad, D. Baleanu, A. Atangana, New fractional derivatives applied to the Korteweg-de Vries and Korteweg-de Vries-Burger’s equations. Comput. Appl. Math. 1, 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  46. K. Singh, M. Bajpai, R. Pandey, A novel approach for edge detection of low contrast satellite images. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 1, 211–217 (2015)

    Article  Google Scholar 

  47. D. Shukla, D. Bhat, B. Devi, Anterior communicating artery aneurysm presenting with vision loss. J. Neurosci. Rural Pract. 4(3), 305–307 (2013)

    Article  Google Scholar 

  48. D. Tian, J.F. Wu, Y.J. Yang, A fractional-order sobel operator for medical image structure feature extraction, in Advanced Materials Research. Trans Tech Publications 860, 2910–2913 (2014)

    Article  Google Scholar 

  49. D. Tian, J. Wu, Y. Yang, A fractional-order Laplacian operator for image edge detection. Appl. Mech. Mater. 536, 55–58 (2014)

    Article  Google Scholar 

  50. M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models. Eur. Phys. J. Plus 132(10), 1–16 (2017)

    Article  Google Scholar 

  51. H. Yang, Y. Ye, D. Wang, B. Jiang, A novel fractional-order signal processing based edge detection method, in 11th International Conference on Control Automation Robotics and Vision, Singapore, (2010), pp. 1122–1127

  52. Q. Yang, D. Chen, T. Zhao, Q. Chen, Fractional calculus in image processing: a review. Fract. Calc. Appl. Anal. 19(5), 1222–1249 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Y. Zhang, Y. Pu, J. Zhou, Construction of fractional differential masks based on Riemann–Liouville definition. J. Comput. Inf. Syst. 6(10), 3191–3199 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to all of the anonymous reviewers for their valuable suggestions. Jorge Enrique Lavín Delgado and Jesús Emmanuel Solís Pérez acknowledge the support provided by CONACyT through the assignment post-doctoral and doctoral fellowship, respectively. José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: Cátedras CONACyT para jóvenes investigadores 2014. José Francisco Gómez Aguilar and Ricardo Fabricio Escobar Jiménez acknowledge the support provided by SNI-CONACyT.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavín-Delgado, J.E., Solís-Pérez, J.E., Gómez-Aguilar, J.F. et al. A New Fractional-Order Mask for Image Edge Detection Based on Caputo–Fabrizio Fractional-Order Derivative Without Singular Kernel. Circuits Syst Signal Process 39, 1419–1448 (2020). https://doi.org/10.1007/s00034-019-01200-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01200-3

Keywords