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Abstract
Machine learning (ML) algorithms are already transforming the way data are collected
and processed in the data center, where some form of AI has permeated most areas of
computing. The integration of AI algorithms at the edge is the next logical step which
is already under investigation. However, harnessing such algorithms at the edge will
require more computing power than what current platforms offer. In this paper, we
present an FPGA system-on-chip-based architecture that supports the acceleration of
ML algorithms in an edge environment. The system supports dynamic deployment of
ML functions driven either locally or remotely, thus achieving a remarkable degree of
flexibility . We demonstrate the efficacy of this architecture by executing a version of
the well-known YOLO classifier which demonstrates competitive performance while
requiring a reasonable amount of resources on the device.

Keywords Acceleration · YOLO · EDGE · Fog · ML · Acceleration of machine
learning · AI · Computing · PCP

1 Introduction

The omnipotence and omniscience of cloud computing has been one of the mantras of
the last decade and continues unabated until today. At the same time, voices warning
of a forthcoming collision between cloud computing and the other big trend of recent
years, the Internet of Things, are also multiplying, slowly but steadily.

The solution to this predicament seams to be edge computing, which tries to move
part of the workload from the cloud to the edge of the network. Under this overarching
theme, one finds many different concepts such as Cloudlets, fog computing and the
recently announced multi-access edge computing (MEC). These efforts all share a
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basic premise, namely the use of virtualized resources at the edge of the network, to
perform at least part of the data analysis and storage there.

The main drive behind this is twofold. Its first component is the need to stem the
tide of data threatening to overflow the hyperscaled data centers on which the cloud
is based as trillions of devices will come online and connect to the Internet over the
next years. These devices will all produce an enormous amount of information which
will need to be processed in various ways. Some of that processing will need to be
done over an aggregated set of data on a large scale (e.g., collecting and analyzing
vehicle data over an entire state), but some will have much more limited scope and
significance (using the same example, data regarding traffic in specific areas can be
analyzed to optimize traffic light patterns). The latter is an example of processing that
can be performed locally, close to the data source, thus reducing the data that need to
be transferred to a data center and back and thus the network’s load.

2 RelatedWork

With the evolution of fifth-generation mobile networking (5G) to be down the wire,
bringing a variety of newandold services, the ability to handle and stabilize the “churn”
problem of network operators becomes critical. This problem of network operators is
strictly interconnected with the understanding of customers and their wide demand for
service consumption that until recently was hard to acquire in specific requirements.
Following, it becomes evident that we need to support the operator with a decision near
the edge that will be assisted by technology which can be cooperative and trusted [19]
and at the same time can be helpful to the operator. Subsequently, we need to support
5G services with an assistive decision technology that will be able to assist user inter-
vention in delay-sensitive applications [3,8]. Specific algorithms try to predict utility
functions without user intervention [20]. They follow appropriate paradigms to guar-
antee statistically significant results[15]. There are several available solutions for churn
prediction to exploit machine learning techniques [11]. However, these solutions have
severe limitations in terms of forecast accuracy and real applicability. Applicability is
related to the understanding of the forecast model. The problem is of relevance, if QoE
inference is derived as a function of all the information available, such as network state,
results of marketing campaigns, contractual, demographic, billing, handset, market,
customer survey data and other factors. For instance, in [16], 750 features are jointly
analyzed. The amount of information may become even larger if other critical factors
are considered, such as cyber-security indicators [1], or in case network monitoring
data [5] are directly put as an input to the forecast model. These complex models with
a wide variety of features are the rationale behind the so-called big data trend, recently
emerged in both the scientific community [22] and the ICTmarket [4,13].Mapping this
kind of big data structures into intelligible models is a formidable problem. Due to the
intensity of the sources [2], it is obvious that we firstly need to process the sources near
the data generation “springs” and secondly to be able to handle the overload generated
at the edge. The authors in [9,10] and [6] presented some architectures that propose the
exploitation of fog installations at the network edge, setting the basis for low end-to-
end latency, by providing the necessary computing resources required to deploy and
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maintain the 5G grade services close to their consumers. Moreover, identifying the
ongoing need for extra processing, storage and bandwidth capacity, they go some steps
further and propose the use of a field programmable gate array (FPGA) system-on-chip
(SoC), which is an integrated circuit that combines processors, programmable fabric
and potentially additional logic[7]. This combination allows us to optimally balance
the task load by allowing the processors to handle control-dominated tasks, like man-
aging a Fog network and delegating all compute-intensive tasks to the programmable
logic. To accomplish this, the programmable fabric needs to be virtualized so that the
orchestration environment can deploy the appropriate application on it at any given
time. This is accomplished by executing cloud software on the processors of the FPGA
SoC, which, together with the specialized hardware, enables the deployment of hard-
ware virtual machines on the programmable logic. These accelerated Fog nodes can
help in various services, e.g., health [12] mobile [6] but following and borrowing from
the Cloud domain [7] the real support can be in the acceleration of the decision in the
edge. In this paper, we present an edge acceleration platform architecture that can be
used for accelerating AI-based inference at the edge.

3 Edge Acceleration Platform Architecture

Our acceleration platform is based on a small FPGA SoC, a Zynq 7030 device, that
presents the optimal trade-off between the flexibility of a CPU and the compute
resources provided by an FPGA. Our platform is divided into software and hard-
ware parts with the former running on the ARM-based CPU and the latter on the
FPGA fabric. Each of these accommodate a static part and a dynamic part.

The static part is the software and hardware required to enable our acceleration plat-
form to perform its task. This entails the OpenStack worker that is required to receive
and deploy tasks, perform any network interface virtualization required and interface
with the VM deployed on the platform. The hardware includes all the interconnect
required to access data on the sharedmemory between the CPU and the programmable
logic, so as to avoid costly data transfers between CPU and FPGA memory.

The software running on the FPGA SoC’s ARMCPUs allows the integration of the
platform intoOpenStack,which is explained in Sect. 3.2. Finally, the changes thatwere
performed in the OpenStack controller, in order to allow it to utilize programmable
logic-based devices, are highlighted in Sect. 3.3. Our edge processing platform strikes
one important compromise in order to streamline its design and make it suitable for
portable, power-constrained devices. This is to allow for the deployment of only a
single virtual machine at any given point in time, thus making the platform single
tenant. This was done for several reasons, the foremost of which are to avoid the
complications of multi-tenancy in terms of designing and managing the appropriate
hardware cores but also since there little incentive to do so in a device as small as the
one selected here. In the results section it is proved that the SoC cannot handle in full
an entire application much less accommodate more of them.
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3.1 Hardware

The platform allows for the deployment of tasks onto the programmable logic, which
can be swapped in and out by theOpenStack controller as required. To accomplish this,
we utilize a feature present in modern FPGA called dynamic partial reconfiguration
(DPR). DPR allows part of the programmable fabric to be reprogrammed on the fly,
while the remainder of the device continues to operate as intended. We use DPR to
update the HWVM that is executed on the programmable logic on the fly. As such, the
programmable logic in the programmable cloud platform is further sub-divided into
two parts, the static and dynamic ones, a typical arrangement in systems that utilize
dynamic partial reconfiguration to change the functionality of a section of the device.
This division is shown in Fig. 1.

The static area is ancillary and enables the reconfiguration of the dynamic one, as
well as the interconnection of the processor system (PS) with the dynamic area. It
contains an AXI interconnection which connects the PS to the programmable logic
(PL) as well as the PCAP that performs the reconfiguration of the dynamic area. The
AXI Interconnect module contains two channels, one for data traffic, to and from the
HW VM and one used for sending monitoring data from the VM to the monitoring
SW on the CPU. The AXI interconnect runs at 250MHz and has a width of 64 bits,
thus providing enough bandwidth to and from the dynamic area.

The dynamic area is the larger part of the programmable fabric and is where the HW
VM is deployed after receiving it over the OpenStack worker. The deployed HW VM
contains the user accelerator and a monitoring component as mentioned previously.

Fig. 1 Overview of the edge acceleration platform architecture
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This component is provided as part of the platform; however, the accelerator designer
must feed it with the appropriate monitoring data which will then be sent to the PS.

3.2 Software

A large part of the innovation in the programmable cloud platform comes from its soft-
ware.At the core of the software is themodifiedprogrammable-logic-awareOpenStack
(compute) worker node which is assisted by low-level software that writes data into
the shared memory, the DevC driver that feeds data into the PCAP, an FPGA com-
ponent that is responsible for performing the actual DPR, and a pseudo-libvirt library
that poses as a counterpart to the worker and answers queries regarding the available
resources of the device, through an extended API as described in Sect. 3.3. As the
FPGA SoC is single tenant, the libvirt is a, respectively, simple component. From a
high-level perspective, workers executing a modified version of the compute service
client are responsible for managing the VMs. Quite similar to its original purpose,
workers can deploy, terminate and reboot VMs, as well as run monitoring services to
provide valuable information such as FPGA resource utilization.

An important aspect that must be taken under consideration in the software stack
is the synchronization between data traffic and the deployment of a new VM. It is
imperative that when the VM is retired and the programmable fabric is to be recon-
figured, all pending transactions between the VM and the SW have been completed.
This includes all memory transactions for both the actual accelerator and any moni-
toring data that might be transferred at any given time. If stale data remain in the AXI
interconnection, then this will lead to unpredictable behavior from which it might be
impossible to recover. The SW stack takes special care of this by synchronizing the
threads passing the data from the OpenStack agent on to the fabric. Thus, when a
new deployment request comes down for execution, the software is notified and stops
receiving new transfers from that point on, while at the same time locking the deploy-
ment thread until all outstanding transactions have been completed. The VM image
(essentially the bitstream) can then be passed on to DevC driver, which will perform
the reconfiguration. The locks will then be released, so traffic can start flowing again
to and from the accelerator.

Finally, the software stack includes a monitoring component which reads the mon-
itoring data off the dedicated AXI interconnect, writes them into a local file and
transmits them to a remote server over the well-known curl utility, which has been
cross-compiled for the Zynq platform.

3.3 Making OpenStack FPGA-Aware

When it comes to deploying a VM using a multi-tenant OpenStack topology, the
OpenStack compute worker node is only one side of the coin. The other side is the
OpenStack controller node which is responsible for running services that direct and
manage the deployment of tasks in the pool of worker nodes it supervises. It also
provides a single point of access through API services for communication with the
other components of OpenStack. Deploying a HW VM correctly requires not only
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an adapted worker but also and an FPGA-aware OpenStack controller node. Related
aspects of the controller’s functionality that were taken into account and modified in
order to make it FPGA-aware for the needs of the proposed solution are listed below:

– Adaptation of the Scheduler service to recognize, locate and manage pro-
grammable logic-based devices and assign HW VMs to them. The allocation of
VMs to tenants is done based on several filtering functions that apply criteria to
select the most suitable tenant that will host a VM. The selection is done based on
a pre-defined set of metrics and information gathered from themonitoring services
running on the worker nodes.

– The OpenStack Nova API service has been extended in order to include the calls
to platform-specific functions. Toward this direction, additional commands have
been added to the API that allow the management of the HW VM images, by
identifying and deploying them. So far, the changes are command-line only. It goes
without saying the extensions on the Nova API are backward compatible and were
implemented with respect to the Nova developers policies. This is accomplished
taking advantage of the API microversions framework that allows for specification
of the API version that will be used in any circumstance.

– The conductor service, which also runs on the controller node, was slightly adapted
in order to maintain access to the default relational database used by OpenStack,
for storing stateful information regarding the status of the platform. OpenStack’s
messaging queue is put to use to an extend that allows the brokerage of our system-
specific messages between worker nodes, API service, scheduler and the network
service described below.

Another important aspect of deploying VMs over OpenStack is the provision and
management of basic networking services. For the allocation of IP addresses, setup
and configuration of the virtual networks of the host nodes , a Nova-network service
runs on the controller node, which provisions services such as NAT and DHCP. A
Nova-network client which executes on the worker node is responsible for configuring
the network interface of the respective host. The Nova-network service was selected
over the more advanced OpenStack network service (neutron) due to neutron’s added
complexity and due to the fact that our requirements at this stage of the platform
development do not require advanced networking topologies, or services such as load
balancers and VPN which are offered by neutron.

Since our platform is a compute-only node, our modifications focused on the Nova
component which is responsible formanaging compute tasks but also extend toGlance
and administers the VM images used to deploy the VMs. Thus, the Glance component
was modified to be able to manage HW VMs. Glance can now store these VMs and
identify which ones are destined for FPGA SoCs and which are not, avoiding mishaps
during deployment.

4 YOLO Accelerator

This section briefly introduces the YOLO algorithm, one of the most common and
efficient algorithms for object detection and classification and our implementation,
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which is tailored to suit the needs of our platform. It should be noted that this paper
does not aim at detailing the best possible implementation of the YOLO algorithm ever
presented on an FPGA.We have purposefully selected a smaller device which is better
suited for edge devices than one of the bigger, but much more expensive and power-
hungry FPGAs, which have been used in other studies. Furthermore, the highlight of
this paper is the platform and not the implementation of the YOLO algorithm itself.

4.1 You Only Look Once Primer

Object detection is one of the core visual detection algorithms where the challenge is
to not only identify objects on the image but to also locate them, commonly through
a bounding box.

YOLO [17] is a well-known neural network that represents a new approach to
object detection. Until YOLOcame along, object detectionwas based on existingwork
that utilized classifiers. YOLO approaches object detection as a regression problem
to spatially separated bounding boxes and associated class probabilities. Both the
classification problem and the detection of the classified objects on the image are
handled as one task by one neural network. This allows across the board optimizations
which lead to a very fast architecture. The original YOLO network could achieve 45
frames per second, while an streamlined version called Fast YOLO could reach 155
frames per second. It outperforms all other detection methods, including DPM [21]
and RCNN [18], by a wide margin when generalizing from natural images to artwork
on both the Picasso Dataset and the People-Art Dataset. We defer further description
to the related publications as this does not form the core of our papers.

4.2 Algorithm Implementation

Our implementation of the YOLO algorithm is based on [14]. Thus, we apply similar
techniques where we reduce the convolution layers of the algorithm to a binary weight
format (− 1 to 1) and a 3-bit feature map. These layers form the bulk of the processing
as 97% of all the operations in the YOLO algorithm are part of these convolutional
layers. The remaining 3%are part of the input and output layerswhich are not amenable
to quantization and can only be trimmed down to an 8-bit fixed-point representation
without significant loss in accuracy.

Even at this reduced accuracy, implementing all of the convolution layer of the
algorithm in a parallel manner on a small device such as the Zynq 7030 is prac-
tically impossible. Thus, we opt to time multiplex the convolution engines in the
programmable logic. We have thus created optimized modules for each required con-
volution layer, and we use dynamic partial reconfiguration, a feature endemic to our
platform, to swap them in and out as required. As we will see in Results section, the
reconfiguration time is really short (since in this case we are not deploying a new vir-
tual machine each time, but simply adjusting the functionality of the programmable
fabric) and thus it is worth optimizing each circuit to reduce power consumption even
further in comparison with a more generic convolution engine.

In contrast to the convolution layers, the input and output layers have been imple-
mented as software kernels and run on the A9 processors using the NEON SIMD
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Fig. 2 Amount of time spent in core SW functions for the accelerated version of YOLO versus the original
version of the code

instruction set which offers reasonable performance for this small part of the target
application. It was decided that designing these layers in the programmable fabric
would not yield sufficient benefit to justify the effort.

5 Results

The comprehensive evaluation of our platform entails two aspects. The first ensures
that the infrastructure performs its intended task in an efficient manner, and the second
is that the implemented solution highlights the efficacy of the architecture.

5.1 Platform Results

In order to verify that our platform performs efficiently as the basis for the deployment
of ML algorithms on programmable devices, we measured a set of metrics related to
the overhead the platform adds, both in software and in the hardware.

The first aspect we need to investigate is whether the overhead caused by the
software platform is acceptable. This is critical since we are using a rather weak, dual-
coreA9 processorwhose processing power should be reserved for software component
of the deployed VM. Figure 2 illustrates the share of CPU resources when the system
is running the YOLO accelerator compared to when the system is running the pure
SW version of YOLO. The results illustrate that the bulk of the system resources
is available for the accelerator. The next biggest component is the TCP/IP network
stack which is part of the Linux OS running on the CPU, followed by the OpenStack
worker. Reducing this overhead meaningfully would mean moving some of the TCP
functionality of the CPU into the programmable logic. This should be done with
caution however since this would eat up resources that could be used for the hardware
part of the accelerator.

Next we have to look into the overhead caused by the hardware part of our acceler-
ation platform. This is measured in FPGA compute resources (LUTs, FFs, BRAMs,
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Table 1 Static area resource use LUTs FFs BRAMs

Static area 6738 5384 2

Total available 78600 157200 500

% Used 8.57 3.4 0.4

Fig. 3 Time required to set up a HW/SW virtual machine

etc.) that are used for the static area of the programmable logic and are thus unavail-
able for use in the dynamic part. Table 1 provides an overhead of the resource use of
the static area. It is evident that even in a small FPGA SoC like the Zynq 7030, the
overhead incurred is minimal which allows for ample space for the acceleration logic.

The final aspect of the platform metrics we need to evaluate is the total time it takes
to setup the VM before it can start performing useful work. Maintaining this as low as
possible is important to allow for quick swap in and out of VMs, which enhances the
flexibility of the platform. Figure 3 shows a breakdown of the time it takes to set up a
VM into its constituent components. The data show clearly that while the total time
is not negligible, most of that time is dominated by the network and compute setup in
OpenStack and only a small fraction is due to the actual reconfiguration of the FPGA
logic. Still, it is clear that reducing this time even further is an important area where
future optimization could be performed.

5.2 Algorithm Implementation Results

While the focus of this work is not on the algorithm itself but on the platform, it is
important to highlight that one is able to implement even a very complex machine
learning algorithm on a small FPGA SoC with reasonable results in terms of perfor-
mance and power consumption.

After applying all our optimizations, the maximum frame rate our implementation
of YOLO could achieve was 8fps. This is a significant improvement over executing
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the same code purely on the A9 CPU which resulted in a meager 0.02fps. While
this is not close to 25fps which is the normal video frame rate, it should be suf-
ficient to perform the task required of many embedded edge devices like cameras,
where it is not necessary to process all frames to identify the necessary informa-
tion.

In terms of power consumption, our platform draws a mere 6.57W which is com-
parable to other solutions found in the literature [14].

6 Conclusions

This paper presented a flexible FPGA SoC-based platform that can be used for the
remote deployment of VMs that include a programmable logic component onto a
small, low-cost, low-power device. This device comprises software and hardware
components and allows for the efficient processing of complicated algorithm on our
platform. The concept is validated through the deployment of a modified version of
the well-known YOLO algorithm and the measurement of both platform-specific and
algorithm-related metrics that show that we can remotely deploy a VM to the platform
in a timely manner and with low overhead in the range of several milliseconds and
that a complex algorithm running on the platform can deliver significant performance
benefits (X speed up while consuming Y Watts). Future work will focus on reducing
platform overhead, especially in the software area and on expanding it to support other
forms of task deployment (e.g., containers).
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