Skip to main content
Log in

Toeplitz-Structured Xampling System for Multipulse Signal

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We consider the Xampling system, under the framework of analog compressive sensing for the multipulse signal with unknown shapes. Several Xampling systems have paved the way for sub-Nyquist sampling of multipulse signal. Unfortunately, for practical application, existing architectures still have some drawbacks such as high complexity, low sampling efficiency and imperfect reconstruction. To the best of our knowledge, a simple and effective Xampling system for multipulse signal is still lacking. In this paper, we propose the Toeplitz-structured Xampling system for the multipulse signal to achieve the simplified system construction and improved system performance. Under the proposed scheme, Toeplitz-structured weight coefficients are used to construct the mixed function. Then, the system filter can be obtained with simplified form and low randomness. It is verified that with this filter, the proposed Xampling system shows low complexity, improved sampling efficiency and good reconstruction effect. In addition, considering both the noise and mismatch, we analyze the reconstruction error of the proposed Xampling system. It is shown that our scheme has bounded error and good robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Aldo, D. Mauro, L. Annalisa, Evaluating the uncertainty of digitizing waveform recorders coherently with the GUM. IEEE Trans. Instrum. Meas. 67(10), 2294–2302 (2018)

    Article  Google Scholar 

  2. W.U. Bajwa, J.D. Haupt, G.M. Raz, et al., Toeplitz-structured compressed sensing matrices, in 2007 IEEE/SP Workshop on Statistical Signal Processing, pp. 294–298 (2007)

  3. R.G. Baraniuk, Compressive sensing [Lecture Notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  4. D. Bi, Y. Xie, L. Ma et al., Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction. IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017)

    Article  Google Scholar 

  5. A. Burshtein, M. Birk, T. Chernyakova et al., Sub-Nyquist sampling and fourier domain beamforming in volumetric ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(5), 703–706 (2016)

    Article  Google Scholar 

  6. P. Chen, C. Meng, L.F. Sun et al., Sub-Nyquist sampling and reconstruction of short pulses based on Gabor frames with exponential reproducing windows. Acta Phys. Sin. 64(7), 07070101–07070111 (2015)

    Google Scholar 

  7. P. Chen, C. Meng, C. Wang, Sub-Nyquist sampling for short pulse based on Gabor frame with B-splines windows. Adv. Mater. Res. 926–930, 3266–3269 (2014)

    Article  Google Scholar 

  8. P. Chen, C. Meng, C. Wang, Subspace detection of sub-Nyquist sampling system based on highly redundant Gabor frames. J. Electron. Inf. Technol. 37(12), 2877–2884 (2015)

    Google Scholar 

  9. P. Chen, C. Meng, C. Wang et al., Signal reconstruction based on signal space projection for Gabor frames sampling system with high redundancy. Syst. Eng. Electron. 39(2), 244–252 (2017)

    MATH  Google Scholar 

  10. P. Chen, C. Meng, C. Wang, et al., Sub-Nyquist sampling based on exponential reproducing Gabor windows, in International Conference in Communications, Signal Processing, and Systems, pp. 605–613 (2018)

  11. X. Chen, Z. Yu, B.M. Sadler et al., A sub-Nyquist rate sampling receiver exploiting compressive sensing. IEEE Trans. Circuits Syst. I Regul. Pap. 58(3), 507–520 (2011)

    Article  MathSciNet  Google Scholar 

  12. D. Cohen, K.V. Mishra, Y.C. Eldar, Spectral coexistence in radar using Xampling, in 2017 IEEE Radar Conference, pp. 1185–1190 (2017)

  13. Z. Du, X. Chen, H. Zhang et al., Feature identification with compressive measurements for machine fault diagnosis. IEEE Trans. Instrum. Meas. 65(5), 977–987 (2016)

    Article  Google Scholar 

  14. Y. Du, H. Zhao, D.C. Amp, PCA-based compression method for MWC sampled data. Appl. Res. Comput. 34(3), 940–944 (2017)

    Google Scholar 

  15. S.V. Eslahi, P.V. Dhulipala, C. Shi et al., Parallel compressive sensing in Hybrid space: application in interventional MRI. IEEE Eng. Med. Biol. Mag. 25, 3260–3263 (2017)

    Google Scholar 

  16. K. Gedalyahu, R. Tur, Y.C. Eldar, Multichannel sampling of pulse streams at the rate of innovation. IEEE Trans. Signal Process. 59(4), 1491–1504 (2011)

    Article  MathSciNet  Google Scholar 

  17. J.D. Haupt, W.U. Bajwa, G.M. Raz et al., Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans. Inf. Theory 56(11), 5862–5875 (2010)

    Article  MathSciNet  Google Scholar 

  18. G. Huang, N. Fu, L. Qiao et al., A simplified FRI sampling system for pulse streams based on constrains random modulation. IEEE Trans. Circuits Syst. II Express Briefs 65(2), 256–260 (2018)

    Article  Google Scholar 

  19. E. Li, F. Khalvati, M.J. Shafiee et al., Sparse reconstruction of compressive sensing MRI using cross-domain stochastically fully connected conditional random fields. BMC Med. Imaging 16, 1–12 (2016)

    Article  Google Scholar 

  20. S. Liu, Y. Ma, T. Shan, Segmented discrete polynomial-phase transform with coprime sampling, in Proceedings of 2018 IET International Radar Conference (IRC), p. C0073 (2018)

  21. S. Liu, Y.D. Zhang, T. Shan et al., Structure-aware Bayesian compressive sensing for frequency-hopping spectrum estimation with missing observations. IEEE Trans. Signal Process. 66(8), 2153–2166 (2018)

    Article  MathSciNet  Google Scholar 

  22. E. Matusiak, Y.C. Eldar, Sub-Nyquist sampling of short pulses. IEEE Trans. Signal Process. 60(3), 1134–1148 (2010)

    Article  MathSciNet  Google Scholar 

  23. M. Mishali, Y.C. Eldar, A.J. Elron, Xampling: signal acquisition and processing in union of subspaces. IEEE Trans. Signal Process. 59(10), 4719–4734 (2011)

    Article  MathSciNet  Google Scholar 

  24. L. Negri, A. Paterno, M. Muller et al., Sparse force mapping system based on compressive sensing. IEEE Trans. Instrum. Meas. 66(4), 830–836 (2017)

    Article  Google Scholar 

  25. M. Pelissier, C. Studer, Non-uniform Wavelet sampling for RF analog-to-information conversion. IEEE Trans. Circuits Syst. I Regul. Pap. 65(2), 471–484 (2018)

    Article  MathSciNet  Google Scholar 

  26. Z. Qin, T. Liu, M. Elkashlan et al., Wireless powered cognitive radio network with compressive sensing and matrix completion. IEEE Trans. Commun. 65(4), 1465–1476 (2016)

    Google Scholar 

  27. S.K. Sharma, E. Lagunas, S. Chatzinotas et al., Application of compressive sensing in cognitive radio communications: a survey. IEEE Commun. Surv. Tutor. 18(3), 1838–1860 (2016)

    Article  Google Scholar 

  28. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  29. L. Stankovic, E. Sejdic, S. Stankovic, A tutorial on sparse reconstruction and its applications in signal processing. Circuits Syst. Signal Process. 38(3), 1206–1263 (2019)

    Article  Google Scholar 

  30. M. Trakimas, R. D’Angelo, S. Aeron et al., A compressed sensing analog-to-information converter with edge-triggered SAR ADC core. IEEE Trans. Circuits Syst. I Regul. Pap. 60(5), 1135–1148 (2013)

    Article  MathSciNet  Google Scholar 

  31. J.A. Tropp, J.N. Laska, M.F. Duarte et al., Beyond Nyquist: efficient sampling of sparse bandlimited signals. IEEE Trans. Inf. Theory 56(1), 520–544 (2009)

    Article  MathSciNet  Google Scholar 

  32. H. Wang, Y. Ke, G. Luo et al., Compressed sensing of roller bearing fault based on multiple down-sampling strategy. Meas. Sci. Technol. 27, 0250091–0250099 (2016)

    Google Scholar 

  33. C. Wang, Y. Wang, P. Chen et al., Sub-Nyquist sampling for short pulses with Gabor frames. EURASIP J. Wirel. Commun. Netw. 72, 1–10 (2017)

    Google Scholar 

  34. Q. Wang, P. Zhang, C. Meng et al., Multi-task Bayesian compressive sensing for vibration signals in diesel engine health monitoring. Measurement 139, 625–635 (2018)

    Google Scholar 

  35. C.C. Wei, H.C. Liu, C.T. Lin et al., Analog-to-digital conversion using sub-Nyquist sampling rate in flexible delay-division multiplexing OFDMA PONs. J. Lightw. Technol. 34(10), 2381–2390 (2016)

    Article  Google Scholar 

  36. W.C. Wu, Joint downlink beamforming and time-reversed matched filtering for multiuser UWB signals. Circuits Syst. Signal Process. 29(4), 781–793 (2010)

    Article  MathSciNet  Google Scholar 

  37. Y. Yang, H. Li, Z. Xu et al., Deep ADMM-NET for compressive sensing MRI. Adv. Neural Inf. Process. Syst. 1, 1–9 (2016)

    Google Scholar 

  38. Y. Zhang, L.Y. Zhang, J. Zhou et al., A review of compressive sensing in information security field. IEEE Access 4, 2507–2519 (2017)

    Article  Google Scholar 

  39. H.F. Zhou, L. Huang, J. Li, Compressive sampling for spectrally sparse signal recovery via one-bit random demodulator. Digit. Signal Process. 81, 1–7 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61501493, 51305454).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Proposition III

For the output in (13), we have

$$ y_{l} (m) = (\text{e}^{ - 2\pi iblt} x(t) * s( - t))[WKm] = \int_{ - \infty }^{ + \infty } {\text{e}^{ - 2\pi iblt} x(t)} s(t - WKm) $$
(61)

Since x(t) is supported on [− T/2, T/2] and the shifted versions of sm(t) are not overlapping between each other in (12), then

$$ \int_{ - \infty }^{ + \infty } {e^{ - 2\pi iblt} x(t)} s(t - WKm) = \int_{{ - \frac{T}{2}}}^{{\frac{T}{2}}} {e^{ - 2\pi iblt} x(t)} s(t - WKm) = \int_{{ - \frac{T}{2}}}^{{\frac{T}{2}}} {e^{ - 2\pi iblt} x(t)} s_{m} (t) $$
(62)

For the structured Xampling system, sm(t) satisfies (35), then with the m ≤ M

$$ \left\{ {\begin{array}{*{20}l} {s_{m} (t)\; = s_{0} (t - am)\quad \text{if}\quad \left( { - K_{0} + m - 1} \right)a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \le t \le (K_{0} + 1)a - {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \hfill \\ {s_{m} (t)\; \ne s_{0} (t - am)\quad \text{if}\quad (K_{0} + 1)a - {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} < t \le K_{0} a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}{\text{or}} - K_{0} a} \hfill \\ {\quad - {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \le t < \left( { - K_{0} + \Delta m - 1} \right)a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \hfill \\ \end{array} } \right. $$
(63)

For \( - K_{0} a - {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \le t < \left( { - K_{0} + m - 1} \right)a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \), we have

$$ \left\{ {\begin{array}{*{20}l} {s_{m} (t)\; = s_{M} (t + a(M - m))\quad \text{if}\quad \left( { - K_{0} - 1} \right)a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \le t \le \left( { - K_{0} + m - 1} \right)a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \hfill \\ {s_{m} (t)\; \ne s_{M} (t + a(M - m))\quad \text{if}\quad - K_{0} a - {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \le t < \left( { - K_{0} - 1} \right)a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}\quad } \hfill \\ \end{array} } \right. $$
(64)

Then,

$$ \left\{ {\begin{array}{*{20}l} {s_{m} (t)\; \ne s_{M} (t + a(M - m))} \hfill & {\text{if}\quad - K_{0} a - {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \le t < \left( { - K_{0} - 1} \right)a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \hfill \\ {s_{m} (t)\; = s_{M} (t + a(M - m))} \hfill & {\text{if}\quad \left( { - K_{0} - 1} \right)a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \le t \le \left( { - K_{0} + m - 1} \right)a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \hfill \\ {s_{m} (t)\; = s_{0} (t - am)} \hfill & {\text{if}\quad \left( { - K_{0} + m - 1} \right)a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \le t \le (K_{0} + 1)a - {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \hfill \\ {s_{m} (t)\; \ne s_{0} (t - am)} \hfill & {\text{if}\quad (K_{0} + 1)a - {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} < t \le K_{0} a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \hfill \\ \end{array} } \right. $$
(65)

It is known that K0 is chosen to satisfy the condition

$$ - \frac{{W_{g} }}{2} + (K_{0} + 1)a \ge \frac{T}{2}\quad \text{and}\quad ( - K_{0} - 1)a + \frac{{W_{g} }}{2} \le - \frac{T}{2} $$
(66)

And considering that x(t) is supported on [-T/2, T/2], the values of the sm(t) on the interval \( (K_{0} + 1)a - {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} < t \le K_{0} a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \) and \( - K_{0} a - {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \le t < \left( { - K_{0} - 1} \right)a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \) will not influence the output in (62).

Assume that

$$ \left\{ \begin{aligned} \begin{array}{l} s'_{m} (t)\; = s_{0} (t - am)\quad \text{if}\quad \left( { - K_{0} + m - 1} \right)a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \le t \le K_{0} a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \hfill \\ s'_{m} (t)\; = s_{M} (t + aM - am)\quad \text{if}\quad - K_{0} a - {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \le t \le \left( { - K_{0} + m - 1} \right)a + {\raise0.7ex\hbox{${W_{g} }$} \!\mathord{\left/ {\vphantom {{W_{g} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} \hfill \\ \end{array}\end{aligned} \right. $$
(67)

Then,

$$ \begin{aligned} \int_{{ - \frac{T}{2}}}^{{\frac{T}{2}}} {e^{ - 2\pi iblt} x(t)} s_{m} (t) & = \int_{{ - \frac{T}{2}}}^{{\frac{T}{2}}} {e^{ - 2\pi iblt} x(t)} s'_{m} (t) = \int_{ - \infty }^{ + \infty } {e^{ - 2\pi iblt} x(t)} s'(t - am) \\ & = (e^{ - 2\pi iblt} x(t) * s'( - t))[am] = y'_{l} (m) \\ \end{aligned} $$
(68)

So Proposition III is proven.

Appendix B: Proof of Corollary I

Given the dual window g*(t) and corresponding bounds A* and B*, where A* is lower bound and B* is upper bound, we have

$$ A^{*} \left\| {\left| x \right|} \right\|_{2}^{2} \le \sum\limits_{k} {\left| {\left\langle {x,g_{k}^{*} } \right\rangle } \right|}_{2}^{2} \le B^{*} \left\| {\left| x \right|} \right\|_{2}^{2} \quad \text{and}\quad \left\| {\sum\limits_{k} {c_{k} g_{k}^{*} } } \right\|_{2}^{2} \le B^{*} \sum\limits_{k} {\left| {c_{k} } \right|^{2} } $$
(69)

As g′(t) is the approximation of g(t), then

$$ \begin{aligned} & \left\| {x_{c} - \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\left\langle {x_{c} (t),M_{bl} T_{ak} g^{\prime } (t)} \right\rangle } M_{bl} T_{ak} g^{*} (t)} } \right\|_{2}^{2} \\ & \quad = \left\| {\sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\left\langle {x_{c} (t),M_{bl} T_{ak} g(t)} \right\rangle } M_{bl} T_{ak} g^{*} (t)} - \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\left\langle {x_{c} (t),M_{bl} T_{ak} g^{\prime } (t)} \right\rangle } M_{bl} T_{ak} g^{*} (t)} } \right\|_{2}^{2} \\ & \quad = \left\| {\sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\left\langle {x_{c} (t),M_{bl} T_{ak} (g(t) - g^{\prime } (t))} \right\rangle } M_{bl} T_{ak} g^{*} (t)} } \right\|_{2}^{2} \\ & \quad \le B^{*} \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\left| {\left\langle {x_{c} (t),M_{bl} T_{ak} (g(t) - g^{\prime } (t))} \right\rangle } \right|^{2} } } \\ \end{aligned} $$
(70)

Since

$$ \left( {\sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\left| {\left\langle {x_{c} (t),M_{bl} T_{ak} (g(t) - g^{\prime } (t))} \right\rangle } \right|}^{2} } } \right)^{1/2} \le \mu_{1} \left\| {x_{c} (t)} \right\|_{2} $$
(71)

Then we have

$$ \left\| {x_{c} - \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\left\langle {x_{c} (t),M_{bl} T_{ak} g'(t)} \right\rangle } M_{bl} T_{ak} g^{*} (t)} } \right\|_{2}^{{}} \le \mu_{1} \sqrt {B^{*} } \left\| {x_{c} (t)} \right\|_{{_{2} }}^{{}} $$
(72)

So Corollary I is proven.

Appendix C: Proof of Corollary II

As \( \hat{z}_{k,l}^{\prime } \) is the reconstructed Gabor coefficient, the total deviation in reconstruction can be given by:

$$ \begin{aligned} & \left\| {x - \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\hat{z}'_{k,l} } M_{bl} T_{ak} g^{*} (t)} } \right\|_{2}^{{}} \\ & = \left\| {x - \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {z'_{k,l} } M_{bl} T_{ak} g^{*} (t)} + \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {z'_{k,l} } M_{bl} T_{ak} g^{*} (t)} - \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\hat{z}'_{k,l} } M_{bl} T_{ak} g^{*} (t)} } \right\|_{2}^{{}} \\ & = \left\| {x - \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\left\langle {x_{c} (t),M_{bl} T_{ak} g'(t)} \right\rangle } M_{bl} T_{ak} g^{*} (t)} + \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {(z'_{k,l} - \hat{z}'_{k,l} )} M_{bl} T_{ak} g^{*} (t)} } \right\|_{2}^{{}} \\ \end{aligned} $$
(73)

In Eq. (58), we have

$$ \begin{aligned} & \left\| {x - \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\left\langle {x_{c} (t),M_{bl} T_{ak} g'(t)} \right\rangle } M_{bl} T_{ak} g^{*} (t)} + \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {(z'_{k,l} - \hat{z}'_{k,l} )} M_{bl} T_{ak} g^{*} (t)} } \right\|_{2}^{{}} \\ & \quad \le \left\| {x - \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\left\langle {x_{c} (t),M_{bl} T_{ak} g'(t)} \right\rangle } M_{bl} T_{ak} g^{*} (t)} } \right\|_{2}^{{}} + \mu_{2} \sigma_{N} \sqrt {B^{*} } \\ \end{aligned} $$
(74)

In Eq. (49) and Corollary I, we have

$$ \begin{aligned} & \left\| {x - \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\left\langle {x_{c} (t),M_{bl} T_{ak} g'(t)} \right\rangle } M_{bl} T_{ak} g^{*} (t)} } \right\|_{2}^{{}} \\ & \quad = \left\| {x - x_{c} + x_{c} - \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\left\langle {x_{c} (t),M_{bl} T_{ak} g'(t)} \right\rangle } M_{bl} T_{ak} g^{*} (t)} } \right\|_{2}^{{}} \\ & \quad \le \left\| {x - x_{c} } \right\|_{2}^{{}} + \mu_{1} \sqrt {B^{*} } \left\| {x_{c} (t)} \right\|_{{_{2} }}^{{}} \\ & \quad \le \sqrt {\varepsilon_{\varOmega } } \left\| {x(t)} \right\|_{2}^{{}} + \mu_{1} \sqrt {B^{*} } \left\| {x_{c} (t)} \right\|_{{_{2} }}^{{}} \\ \end{aligned} $$
(75)

Then, the total deviation can be expressed as:

$$ \left\| {x - \sum\limits_{{k = - K_{0} }}^{{K_{0} }} {\sum\limits_{{l = - L_{0} }}^{{L_{0} }} {\hat{z}'_{k,l} } M_{bl} T_{ak} g^{*} (t)} } \right\|_{2}^{{}} \le \sqrt {\varepsilon_{\varOmega } } \left\| {x(t)} \right\|_{2}^{{}} + \mu_{1} \sqrt {B^{*} } \left\| {x_{c} (t)} \right\|_{{_{2} }}^{{}} + \mu_{2} \sigma_{N} \sqrt {B^{*} } $$
(76)

So Corollary II is proven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Meng, C., Wang, C. et al. Toeplitz-Structured Xampling System for Multipulse Signal. Circuits Syst Signal Process 39, 1603–1629 (2020). https://doi.org/10.1007/s00034-019-01227-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01227-6

Keywords

Navigation