Abstract
In this paper, we develop a new framework for designing state estimators/filters and output measurement feedback controllers for affine nonlinear systems in state space. The problems are formulated as zero-sum differential games, and sufficient conditions for their solvability are given in terms of Hamilton–Jacobi–Isaacs equations (HJIEs). These HJIEs are new, in the sense that they are both state-dependent and measurement output dependent. This allows for the filter and observer gains to be optimized over all possible nonlinear gains. Examples and simulation results are also presented to support the theory.






Similar content being viewed by others
Notes
\(T^{*}{\mathcal X}\), \(T{\mathcal Y}\) represent the cotangent and tangent bundles of \({\mathcal X}\) and \({\mathcal Y}\) with coordinates \((\hat{x},\hat{p}_{1})\), \((y,\dot{y})\), respectively.
Where \({\mathcal L}_{f}(.)\) is the Lie-derivative operator along f.
References
M.D.S. Aliyu, Nonlinear \(\cal{H}_{\infty }\)Control Hamiltonian Systems and Hamilton–Jacobi Equations (CRC-Taylor and Francis, Boca-Raton, FL, 2011)
B.D.O. Anderson, J.B. Moore, Optimal Filtering (Prentice Hall, Upper Saddle River, 1979)
I. Arasaratnan, S. Haykin, Cubature Kalman filters. IEEE Trans. Autom. Control 54(6), 1254–1269 (2009)
B. Balaji, Universal nonlinear filtering using Feynman path integrals-I: the continuous–discrete model with additive noise. IEEE Trans. Aerosp. Electron. Syst. 48(3), 1935–1960 (2012)
T. Basar, P. Bernhard, \({\cal{H}}_{\infty }\)Optimal Control and Related Minimax Designx. (Birkhauser, New York, 1991)
T. Basar, G.J. Olsder, Dynamic Noncooperative Game Theory (Academic Press, Cambridge, NY, 1982)
N. Berman, U. Shaked, \(\cal{H}_{\infty }\) nonlinear filtering. Int. J. Robust Nonlinear Control 6, 281–296 (1996)
R.S. Bucy, Linear and nonlinear filtering. IEEE Proc. 58(6), 854–864 (1970)
X. Chen, X. Luo, S.S.-T. Yau, Direct method for time-varying nonlinear filtering problems. IEEE Trans. Aerosp. Electron. Syst. 53(2), 630–639 (2017)
L.C. Evans, Partial Differential Equations (Graduate Studies in Maths, AMS, 1998)
A. Isidori, A. Astolfi, \({\cal{H}}_{\infty }\) control via measurement-feedback for affine nonlinear systems. IEEE Trans. Autom. Control 4, 553–574 (1994)
A. Isidori, \({\cal{H}}_{\infty }\) control via measurement-feedback for affine nonlinear systems. Int. J. Robust Nonlinear Control 4, 553–574 (1994)
S.J. Julier, J.K. Ulhmann, H.F. Durrant-Whyte, A new method for nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 472–482 (2000)
S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)
C. Kalender, A. Schottl, Sparse grid-based nonlinear filtering. IEEE Trans. Aerosp. Electron. Syst. 49(4), 2386–2396 (2013)
D.S. Kalogerias, A. Petropulu, Asymptotically optimal discrete-time nonlinear filters from stochastically convergent state estimation process approximations. IEEE Trans. Signal Process. 63(13), 3522–3536 (2015)
P. Khargonekhar, M. Rotea, E. Baeyens, Mixed \({\cal{H}}_{2}/{\cal{H}}_{\infty }\) filtering. Int. J. Robust Nonlinear Control 6(4), 313–330 (1996)
A.J. Krener, Necessary and sufficient conditions for worst-case \(({\cal{H}}_{\infty }\)) control and estimation. J. Math. Syst. Estim. Control 4(4), 1–25 (1994)
H.J. Kushner, Nonlinear filtering: the exact dynamical equation satisfied by the conditional mode. IEEE Trans. Autom. Control 12(3), 262–267 (1967)
Y. Liu, H. Wang, C. Hou, UKF based nonlinear filtering using minimum entropy criterion. IEEE Trans Signal Proccess. 61(20), 4988–4999 (2013)
X. Luo, S.S.-T. Yau, Complete real-time solution of the general nonlinear filtering problem without memory. IEEE Trans. Autom. Control 58(10), 2562–2578 (2013)
D. Marelli, M. Fu, B. Ninness, Asymptotic optimality of the maximum-likelihood Kalman filter for Bayesian tracking with multiple nonlinear sensors. IEEE Trans. Signal Proccess. 63(17), 4502–4515 (2015)
A. Mohammadi, K.N. Plataniotis, Complex-valued Gaussian filter for nonlinear filtering of nongaussian/non-circular noise. IEEE Trans. Signal Process. Lett. 22(4), 440–445 (2015)
R.E. Mortensen, Maximum-likelihood recursive nonlinear filtering. J. Optim. Theory Appl. 2(6), 386–394 (1968)
K.M. Nagpal, P. Khargonekhar, Filtering and smoothing in an \(\cal{H}_{\infty }\) setting. IEEE Trans. Autom. Control 36(2), 152–166 (1991)
S.K. Nguang, M. Fu, Robust nonlinear \({\cal{H}}_{\infty }\) filtering. Automatica 32(8), 1195–1199 (1996)
H.H. Niemann, J. Stoustrup, B. Shafai, S. Beale, LTR design of proportional-integral observers. Int. J. Robust Nonlinear Contr. 5, 671–693 (1995)
R. Postoyan, P. Tabuada, D. Nesic, A. Anta, A framework for the event triggered stabilization of nonlinear systems. IEEE Trans. Autom. Control 60(4), 982–996 (2015)
M.L. Psiaki, Gaussian mixture nonlinear filtering with resampling for mixand narrowing. IEEE Trans. Signal Proccess. 64(21), 5499–5512 (2016)
J, Qiu, K. Sun, T. Wang, H. Gao, Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems. IEEE Trans Fuzzy Systems, To appear (2019). https://doi.org/10.1109/TFUZZ.2019.2895560
R. Radhakrishnan, A. Yadav, P. Date, S. Bhaumik, A new method of generating sigma points and weights for nonlinear filter. IEEE Control Syst. Mag. 2(3), 519–524 (2018)
S. Sastry, Nonlinear Systems: Analysis (Springer-Verlag, Berlin, 1999). Stability and Control
N. Sen, Generation of Conditional densities in nonlinear filtering for infinite-dimensional systems. IEEE Trans. Autom. Control 63(7), 1868–1882 (2018)
F. Wang, J. Zhang, B. Lin, X. Li, Two-stage particle filter for nonlinear Baysian estimation. IEEE Access: Spec. Sect. Multimed. Anal. Int. Things 6, 13803–13809 (2018)
W.H. Zhang, B.S. Chen, C.C. Tseng, Robust \(\cal{H}_{\infty }\) filtering for nonlinear stochastic systems. IEEE Trans. Signal Process. 53(2), 589–598 (2005)
M. Zhong, D. Guo, D. Zhou, A Krein space approach to \(H_{\infty }\) filtering for discrete-time nonlinear systems. IEEE Trans. Circuits Syst. I 61(9), 2644–2652 (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aliyu, M.D.S. A New Hamilton–Jacobi Differential Game Framework for Nonlinear Estimation and Output Feedback Control. Circuits Syst Signal Process 39, 1831–1852 (2020). https://doi.org/10.1007/s00034-019-01229-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-019-01229-4