Skip to main content
Log in

Robust Direction-Finding Method for Sensor Gain and Phase Uncertainties in Non-uniform Environment

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A direction-of-arrival (DOA) estimation algorithm, which is robust to sensor gain and phase uncertainties for completely uncalibrated arrays in a non-uniform noise environment, is proposed in this study. As a result of the sensor gain uncertainties or the shielding effects for some baffled arrays, the noise power may vary with sensors. Therefore, a non-uniform noise model is considered. A cost function established by the orthogonality of subspaces is accumulated along several rough space intervals surrounding the real angles of sources. After analyzing the influences of rough space intervals, an iterative refinement operation is carried out to improve the estimation performance of the DOA and sensor gain and phase responses. The Cramér–Rao bounds of the DOA and sensor gain and phase in the non-uniform noise model are derived. Simulations and experimental results show the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. Astély, A.L. Swindlehurst, B. Ottersten, Spatial signature estimation for uniform linear arrays with unknown receiver gains and phase. IEEE Trans. Signal Process. 47(8), 2128–2138 (1999)

    Article  Google Scholar 

  2. Q. Cheng, Y. Hua, P. Stoica, Asymptotic performance of optimal gain-and-phase estimators of sensor arrays. IEEE Trans. Signal Process. 48(12), 3587–3590 (2000)

    Article  Google Scholar 

  3. B.P. Flanagan, K.L. Bell, Array self-calibration with large sensor position errors. Sig. Process. 81(10), 2201–2214 (2001)

    Article  Google Scholar 

  4. Z. He, Z. Shi, L. Huang, Covariance sparsity-aware DOA estimation for nonuniform noise. Digit. Signal Process. 28, 75–81 (2014)

    Article  Google Scholar 

  5. R.C. Johnson, Antenna engineering handbook, 3rd edn. (McGraw-Hill, New York, 1993)

    Google Scholar 

  6. M. Li, Y. Lu, Source bearing and steering-vector estimation using partially calibrated arrays. IEEE Trans. Aerosp. Electron. Syst. 45(4), 1361–1372 (2009)

    Article  Google Scholar 

  7. B. Liao, S.C. Chan, Direction finding with partly calibrated uniform linear arrays. IEEE Trans. Antennas Propag. 60(2), 922–929 (2012)

    Article  MathSciNet  Google Scholar 

  8. B. Liao, S.C. Chan, Direction finding in partly calibrated uniform linear arrays with unknown gains and phases. IEEE Trans. Aerosp. Electron. Syst. 51(1), 217–227 (2015)

    Article  Google Scholar 

  9. B. Liao, L. Huang, C. Guo, H.C. So, New approaches to direction-of-arrival estimation with sensor arrays in unknown nonuniform noise. IEEE Sens. J. 16(24), 8982–8989 (2016)

    Article  Google Scholar 

  10. B. Liao, S.C. Chan, L. Huang, C. Guo, Iterative methods for subspace and DOA estimation in nonuniform noise. IEEE Trans. Signal Process. 64(12), 3008–3020 (2016)

    Article  MathSciNet  Google Scholar 

  11. C.S. Macinnes, Source localization using subspace estimation and spatial filtering. IEEE J. Ocean. Eng. 29(2), 488–497 (2004)

    Article  Google Scholar 

  12. M. Pesavento, A.B. Gershman, K.M. Wong, Direction finding in partly calibrated sensor arrays composed of multiple subarrays. IEEE Trans. Signal Process. 50(9), 2103–2115 (2002)

    Article  Google Scholar 

  13. B.D. Rao, K.V.S. Hari, Performance analysis of root-MUSIC. IEEE Trans. Acoust. Speech Signal Process. 37(12), 1939–1949 (1989)

    Article  Google Scholar 

  14. R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  Google Scholar 

  15. R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  16. S.D. Somasundaram, N.H. Parsons, Evaluation of robust Capon beamforming for passive sonar. IEEE J. Ocean. Eng. 36(4), 686–695 (2011)

    Article  Google Scholar 

  17. K. Sun, Y. Liu, H. Meng, X. Wang, Adaptive sparse representation for source localization with gain/phase errors. Sensors 11(5), 4780–4793 (2011)

    Article  Google Scholar 

  18. M. Viberg, B. Ottersten, T. Kailath, Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Trans. Signal Process. 39(11), 2436–2449 (1991)

    Article  Google Scholar 

  19. B. Wang, W. Wang, Y. Gu, S. Lei, Underdetermined DOA estimation of quasi-stationary signals using a partly-calibrated array. Sensors 17(4), 702 (2017)

    Article  Google Scholar 

  20. B. Wang, Y.D. Zhang, W. Wang, Robust DOA estimation in the presence of miscalibrated sensors. IEEE Signal Proc. Lett. 24(7), 1073–1077 (2017)

    Article  Google Scholar 

  21. M. Wang, Z. Zhang, A. Nehorai, Performance analysis of coarray-based MUSIC in the presence of sensor location errors. IEEE Trans. Signal Process. 66(12), 3074–3085 (2018)

    Article  MathSciNet  Google Scholar 

  22. A.J. Weiss, B. Friedlander, Eigenstructure methods for direction finding with sensor gain and phase uncertainties. Circuits Syst. Signal Process. 9(3), 271–300 (1990)

    Article  MathSciNet  Google Scholar 

  23. A.J. Weiss, B. Friedlander, DOA and steering vector estimation using a partially calibrated array. IEEE Trans. Aerosp. Electron. Syst. 32(3), 1047–1057 (1996)

    Article  Google Scholar 

  24. A.J. Weiss, B. Friedlander, “Almost blind” steering vector estimation using second-order moments. IEEE Trans. Signal Process. 44(4), 1024–1027 (1996)

    Article  Google Scholar 

  25. F. Wen, X. Zhang, Z. Zhang, CRBs for direction-of-departure and direction-of-arrival estimation in collocated MIMO radar in the presence of unknown spatially coloured noise. IET Radar Sonar Nav. 13(4), 530–537 (2019)

    Article  Google Scholar 

  26. M.P. Wylie, S. Roy, H. Messer, Joint DOA estimation and phase calibration of linear equispaced (LES) arrays. IEEE Trans. Signal Process. 42(12), 3449–3459 (1994)

    Article  Google Scholar 

  27. L. Yang, Y. Yang, Y. Wang, Sparse spatial spectral estimation in directional noise environment. J. Acoust. Soc. Am. 140(3), EL263–EL268 (2016)

    Article  Google Scholar 

  28. L. Yang, Y. Yang, J. Yang, Robust adaptive beamforming for uniform linear arrays with sensor gain and phase uncertainties. IEEE Access 7, 2677–2685 (2019)

    Article  Google Scholar 

  29. M. Zhang, Z. Zhu, A method for direction finding under sensor gain and phase uncertainties. IEEE Trans. Antennas Propag. 43(8), 880–883 (1995)

    Article  Google Scholar 

  30. X. Zhang, Z. He, B. Liao, X. Zhang, J. Xie, DOA and phase error estimation using one calibrated sensor in ULA. Multidim. Syst. Sign. Proc. 29(2), 523–535 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 11527809, 11604259, and 51679204, and in part by the China Postdoctoral Science Foundation under Grant 2019M653569.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The CRB in the Non-uniform Noise Environment

Appendix: The CRB in the Non-uniform Noise Environment

In this appendix, the CRB under the non-uniform noise is calculated. The parameter vector containing all unknown parameters is

$$ {\varvec{z}} = [{\boldsymbol{\theta }}^{\text{T}} ,{\varvec{g}}^{\text{T}} ,{\varvec{\varphi }}^{\text{T}} ,{\varvec{p}}^{\text{T}} ,{\boldsymbol{\sigma }}^{\text{T}} ]^{\text{T}} , $$
(23)

where \( {\boldsymbol{\theta }} = [\theta_{1} ,\theta_{2} , \ldots ,\theta_{K} ]^{\text{T}} \) is the direction of sources; \( {\varvec{g}} \), \( {\varvec{\varphi }} \), and \( {\varvec{p}} \) are the sensor gains, phases, and signal powers, respectively; and \( {\boldsymbol{\sigma }} = [\sigma_{1}^{{}} ,\sigma_{2}^{{}} , \ldots ,\sigma_{M}^{{}} ]^{\text{T}} \) includes the noise powers of each sensor.

When \( N \) independent samples of a zero-mean Gaussian process is given, the CRB equals the inverse of the Fisher information matrix (FIM) whose \( (m,n){\text{th}} \) entry is given by

$$ {\varvec{F}}_{mn} = N \times {\text{tr}}\left\{ {{\varvec{R}}^{ - 1} \frac{{\partial {\varvec{R}}}}{{\partial {\varvec{z}}_{m} }}{\varvec{R}}^{ - 1} \frac{{\partial {\varvec{R}}}}{{\partial {\varvec{z}}_{n} }}} \right\}, $$
(24)

where \( {\text{tr}}\left\{ \cdot \right\} \) denotes the trace operator and \( {\varvec{R}} \) is defined in (3). Then, the FIM can be expressed as a block matrix:

$$ {\varvec{F}} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {{\varvec{F}}_{{{\boldsymbol{\theta \theta }}}} } \\ {{\varvec{F}}_{{{\boldsymbol{\theta g}}}}^{\text{T}} } \\ \end{array} } & {\begin{array}{*{20}c} {{\varvec{F}}_{{{\boldsymbol{\theta g}}}} } \\ {{\varvec{F}}_{{{\varvec{gg}}}} } \\ \end{array} } & {\begin{array}{*{20}c} {{\varvec{F}}_{{{\boldsymbol{\theta \varphi }}}} } \\ {{\varvec{F}}_{{{\varvec{g\varphi }}}} } \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {{\varvec{F}}_{{{\boldsymbol{\theta p}}}} } \\ {{\varvec{F}}_{{{\varvec{gp}}}} } \\ \end{array} } & {\begin{array}{*{20}c} {{\varvec{F}}_{{{\boldsymbol{\theta \sigma }}}} } \\ {{\varvec{F}}_{{{\varvec{g\sigma }}}} } \\ \end{array} } \\ \end{array} } \\ {{\varvec{F}}_{{{\boldsymbol{\theta \varphi }}}}^{\text{T}} } & {{\varvec{F}}_{{{\varvec{g\varphi }}}}^{\text{T}} } & {{\varvec{F}}_{{{\varvec{\varphi \varphi }}}} } & {\begin{array}{*{20}c} {{\varvec{F}}_{{{\varvec{\varphi p}}}} } & {{\varvec{F}}_{{{\varvec{\varphi \sigma }}}} } \\ \end{array} } \\ {{\varvec{F}}_{{{\boldsymbol{\theta p}}}}^{\text{T}} } & {{\varvec{F}}_{{{\varvec{gp}}}}^{\text{T}} } & {{\varvec{F}}_{{{\varvec{\varphi p}}}}^{\text{T}} } & {\begin{array}{*{20}c} {{\varvec{F}}_{{{\varvec{pp}}}} } & {{\varvec{F}}_{{{\varvec{p\sigma }}}} } \\ \end{array} } \\ {{\varvec{F}}_{{{\boldsymbol{\theta \sigma }}}}^{\text{T}} } & {{\varvec{F}}_{{{\varvec{g\sigma }}}}^{\text{T}} } & {{\varvec{F}}_{{{\varvec{\varphi \sigma }}}}^{\text{T}} } & {\begin{array}{*{20}c} {{\varvec{F}}_{{{\varvec{p\sigma }}}}^{\text{T}} } & {{\varvec{F}}_{{{\boldsymbol{\sigma \sigma }}}} } \\ \end{array} } \\ \end{array} } \right]. $$
(25)

First, we define the matrices \( {\dot{\bar{\varvec{A}}}}_{\theta }^{{}} \), \( {\dot{\bar{\varvec{A}}}}_{g}^{{}} \), and \( {\dot{\bar{\varvec{A}}}}_{\varphi }^{{}} \) as

$$ {\dot{\bar{\varvec{A}}}}_{\theta }^{{}} = \sum\limits_{k = 1}^{K} {\frac{{\partial {\bar{\varvec{A}}}}}{{\partial \theta_{k} }}} ,{\dot{\bar{\varvec{A}}}}_{g}^{{}} = \sum\limits_{m = 1}^{M} {\frac{{\partial {\bar{\varvec{A}}}^{{}} }}{{\partial g_{m} }}} ,{\dot{\bar{\varvec{A}}}}_{\varphi }^{{}} = \sum\limits_{m = 1}^{M} {\frac{{\partial {\bar{\varvec{A}}}^{{}} }}{{\partial \varphi_{m} }}} , $$
(26)

where \( {\bar{\varvec{A}}} = {\text{diag}}\{ {\boldsymbol{\gamma }}\} {\varvec{A}} \) is the real steering vector and \( {\varvec{A}} \) is the nominal steering vector. A \( (M - M_{c} ) \times M \) selection matrix \( {\varvec{H}} \) is constituted by \( {\varvec{l}} \) rows of the identity matrix; the set \( {\varvec{l}} \) contains \( M - M_{c} \) uncalibrated sensors.

In consideration of the non-uniform noise model, the last column of the block matrices should be recalculated, and the other blocks remain unchanged, such as that in [8] and [23].

According to (3), we have

$$ \frac{{\partial {\varvec{R}}}}{{\partial {\boldsymbol{\theta }}_{p} }} = {\dot{\bar{\varvec{A}}}}_{\theta }^{{}} {\varvec{e}}_{p} {\varvec{e}}_{p}^{\text{T}} {\varvec{PA}}^{\text{H}} + {\varvec{APe}}_{p} {\varvec{e}}_{p}^{\text{T}} {\dot{\bar{\varvec{A}}}}_{\theta }^{\text{H}} , $$
(27a)
$$ \frac{{\partial {\varvec{R}}}}{{\partial {\varvec{g}}_{p} }} = {\varvec{e}}_{p} {\varvec{e}}_{p}^{\text{T}} {\dot{\bar{\varvec{A}}}}_{g}^{{}} {\varvec{PA}}^{\text{H}} + {\varvec{AP\dot{\bar{A}}}}_{g}^{\text{H}} {\varvec{e}}_{p} {\varvec{e}}_{p}^{\text{T}} , $$
(27b)
$$ \frac{{\partial {\varvec{R}}}}{{\partial {\varvec{\varphi }}_{p} }} = {\varvec{e}}_{p} {\varvec{e}}_{p}^{\text{T}} {\dot{\bar{\varvec{A}}}}_{\varphi }^{{}} {\varvec{PA}}^{\text{H}} + {\varvec{AP\dot{\bar{A}}}}_{\varphi }^{\text{H}} {\varvec{e}}_{p} {\varvec{e}}_{p}^{\text{T}} , $$
(27c)
$$ \frac{{\partial {\varvec{R}}}}{{\partial {\varvec{p}}_{p} }} = {\bar{\varvec{A}e}}_{p} {\varvec{e}}_{p}^{\text{T}} {\bar{\varvec{A}}}^{\text{H}} , $$
(27d)
$$ \frac{{\partial {\varvec{R}}}}{{\partial {\boldsymbol{\sigma }}_{p} }} = {\varvec{e}}_{p} {\varvec{e}}_{p}^{\text{T}} , $$
(27e)

where \( {\varvec{e}}_{p} \) is a vector with the \( p{\text{th}} \) element equal to 1 and the other equal to 0.

Substituting (27a)–(27e) into (24), we can, respectively, obtain \( {\varvec{F}}_{{{\boldsymbol{\theta \sigma }}}} \), \( {\varvec{F}}_{{{\varvec{g\sigma }}}} \), \( {\varvec{F}}_{{{\varvec{\varphi \sigma }}}} \), \( {\varvec{F}}_{{{\varvec{p\sigma }}}} \), and \( {\varvec{F}}_{{{\boldsymbol{\sigma \sigma }}}} \) as

$$ {\varvec{F}}_{{{\boldsymbol{\theta \sigma }}}} = 2\text{Re} \left\{ {\left( {{\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right) \circ \left( {{\varvec{R}}^{ - 1} {\dot{\bar{\varvec{A}}}}_{\theta } } \right)^{\text{T}} } \right\}, $$
(28a)
$$ {\varvec{F}}_{{{\varvec{g\sigma }}}} = 2\text{Re} \left\{ {{\varvec{H}}\left( {{\dot{\bar{\varvec{A}}}}_{g} {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right) \circ \left( {{\varvec{R}}^{ - 1} } \right)^{\text{T}} } \right\}, $$
(28b)
$$ {\varvec{F}}_{{{\varvec{\varphi \sigma }}}} = 2\text{Re} \left\{ {{\varvec{H}}\left( {{\dot{\bar{\varvec{A}}}}_{\varphi } {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right) \circ \left( {{\varvec{R}}^{ - 1} } \right)^{\text{T}} } \right\}, $$
(28c)
$$ {\varvec{F}}_{{{\varvec{p\sigma }}}} = \left( {{\bar{\varvec{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right) \circ \left( {{\varvec{R}}^{ - 1} {\bar{\varvec{A}}}} \right)^{\text{T}} , $$
(28d)
$$ {\varvec{F}}_{{{\boldsymbol{\sigma \sigma }}}} = \left( {{\varvec{R}}^{ - 1} } \right) \circ \left( {{\varvec{R}}^{ - 1} } \right)^{\text{T}} . $$
(28e)

The other block matrices of FIM are listed as follows:

$$ {\varvec{F}}_{{{\boldsymbol{\theta \theta }}}} = 2\text{Re} \left\{ {\left( {{\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\bar{\varvec{A}P}}} \right) \circ \left( {{\dot{\bar{\varvec{A}}}}_{\theta }^{\text{H}} {\varvec{R}}^{ - 1} {\dot{\bar{\varvec{A}}}}_{\theta } } \right)^{\text{T}} + \left( {{\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\dot{\bar{\varvec{A}}}}_{\theta } } \right) \circ \left( {{\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\dot{\bar{\varvec{A}}}}_{\theta } } \right)^{\text{T}} } \right\}, $$
$$ {\varvec{F}}_{{{\boldsymbol{\theta g}}}} = 2\text{Re} \left\{ {\left[ {\left( {{\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right) \circ \left( {{\dot{\bar{\varvec{A}}}}_{g} {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\dot{\bar{\varvec{A}}}}_{\theta } } \right)^{\text{T}} + \left( {{\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\bar{\varvec{A}P\dot{\bar{A}}}}_{g}^{\text{H}} } \right) \circ \left( {{\varvec{R}}^{ - 1} {\dot{\bar{\varvec{A}}}}_{\theta } } \right)^{\text{T}} } \right]{\varvec{H}}^{\text{T}} } \right\}, $$
$$ {\varvec{F}}_{{{\boldsymbol{\theta \varphi }}}} = 2\text{Re} \left\{ {\left[ {\left( {{\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right) \circ \left( {{\dot{\bar{\varvec{A}}}}_{\varphi } {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\dot{\bar{\varvec{A}}}}_{\theta } } \right)^{\text{T}} + \left( {{\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\bar{\varvec{A}P\dot{\bar{A}}}}_{\varphi }^{\text{H}} } \right) \circ \left( {{\varvec{R}}^{ - 1} {\dot{\bar{\varvec{A}}}}_{\theta } } \right)^{\text{T}} } \right]{\varvec{H}}^{\text{T}} } \right\}, $$
$$ {\varvec{F}}_{{{\boldsymbol{\theta p}}}} = 2\text{Re} \left\{ {\left( {{\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\bar{\varvec{A}}}} \right) \circ \left( {{\bar{\varvec{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\dot{\bar{\varvec{A}}}}_{\theta } } \right)^{\text{T}} } \right\}, $$
$$ {\varvec{F}}_{{{\varvec{gg}}}} = 2\text{Re} \left\{ {{\varvec{H}}\left[ {\left( {{\dot{\bar{\varvec{A}}}}_{g} {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right) \circ \left( {{\dot{\bar{\varvec{A}}}}_{g} {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right)^{\text{T}} + \left( {{\dot{\bar{\varvec{A}}}}_{g} {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\bar{\varvec{A}P\dot{\bar{A}}}}_{g}^{\text{H}} } \right) \circ \left( {{\varvec{R}}^{ - 1} } \right)^{\text{T}} } \right]{\varvec{H}}^{\text{T}} } \right\}, $$
$$ {\varvec{F}}_{{{\varvec{g\varphi }}}} = 2\text{Re} \left\{ {{\varvec{H}}\left[ {\left( {{\dot{\bar{\varvec{A}}}}_{g} {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right) \circ \left( {{\dot{\bar{\varvec{A}}}}_{\varphi } {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right)^{\text{T}} + \left( {{\dot{\bar{\varvec{A}}}}_{\varphi } {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\bar{\varvec{A}P\dot{\bar{A}}}}_{g}^{\text{H}} } \right) \circ \left( {{\varvec{R}}^{ - 1} } \right)^{\text{T}} } \right]{\varvec{H}}^{\text{T}} } \right\}, $$
$$ {\varvec{F}}_{{{\varvec{gp}}}} = 2\text{Re} \left\{ {{\varvec{H}}\left[ {\left( {{\dot{\bar{\varvec{A}}}}_{g} {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\bar{\varvec{A}}}} \right) \circ \left( {{\bar{\varvec{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right)^{\text{T}} } \right]{\varvec{H}}^{\text{T}} } \right\}, $$
$$ {\varvec{F}}_{{{\varvec{\varphi \varphi }}}} = 2\text{Re} \left\{ {{\varvec{H}}\left[ {\left( {{\dot{\bar{\varvec{A}}}}_{\varphi } {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right) \circ \left( {{\dot{\bar{\varvec{A}}}}_{\varphi } {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right)^{\text{T}} + \left( {{\dot{\bar{\varvec{A}}}}_{\varphi } {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\bar{\varvec{A}P\dot{\bar{A}}}}_{\varphi }^{\text{H}} } \right) \circ \left( {{\varvec{R}}^{ - 1} } \right)^{\text{T}} } \right]{\varvec{H}}^{\text{T}} } \right\}, $$
$$ {\varvec{F}}_{{{\varvec{\varphi p}}}} = 2\text{Re} \left\{ {{\varvec{H}}\left[ {\left( {{\dot{\bar{\varvec{A}}}}_{\varphi } {\varvec{P\bar{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\bar{\varvec{A}}}} \right) \circ \left( {{\bar{\varvec{A}}}^{\text{H}} {\varvec{R}}^{ - 1} } \right)^{\text{T}} } \right]{\varvec{H}}^{\text{T}} } \right\}, $$
$$ {\varvec{F}}_{{{\varvec{pp}}}} = \left( {{\bar{\varvec{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\bar{\varvec{A}}}} \right) \circ \left( {{\bar{\varvec{A}}}^{\text{H}} {\varvec{R}}^{ - 1} {\bar{\varvec{A}}}} \right)^{\text{T}} . $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yang, Y., Liao, G. et al. Robust Direction-Finding Method for Sensor Gain and Phase Uncertainties in Non-uniform Environment. Circuits Syst Signal Process 39, 1943–1964 (2020). https://doi.org/10.1007/s00034-019-01237-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01237-4

Keywords

Navigation