Skip to main content
Log in

0.3 V Differential Difference Current Conveyor Using Multiple-Input Bulk-Driven Technique

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new ultra-low voltage and ultra-low power differential difference current conveyor (DDCC) which is suitable for portable electronic applications. The proposed DDCC uses the subthreshold technique to reduce the power consumption and the bulk-driven technique to obtain a rail-to-rail input common-mode swing. Unlike previous DDCCs, the multiple-input bulk-driven technique is used in the proposed DDCC to reduce the number of transistors and to achieve the compactness. The proposed DDCC was designed using 0.18 µm TSMC CMOS technology with 0.3 V power supply and 38 nW power consumption. To confirm the workability of the new active device, a third-order elliptic filter using the proposed DDCCs as active device has been introduced as an application example. The proposed DDCC and its application have been designed and simulated in Cadence/Specter environment, and the simulated results prove the functionality and the attractive results of the new circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A. Abaci, E. Yuce, Single DDCC based new immittance function simulators employing only grounded passive elements and their applications. Microelectron. J. 83, 94–103 (2019)

    Article  Google Scholar 

  2. M.T. Abuelma’atti, M.H. Khan, New sinusoidal oscillators employing the CCII internal pole. Int. J. Electron. 83, 817–824 (1997)

    Article  Google Scholar 

  3. C.-M. Chang, S.-H. Tu, M.N.S. Swamy, A.M. Soliman, Analytical synthesis of elliptic voltage-mode even/odd-nth-order filter structures using DDCCs, FDCCIIs, and grounded capacitors and resistors. IET Circuits Devices Syst. 13, 279–291 (2019)

    Article  Google Scholar 

  4. S. Chatterjee, Y. Tsividis, P. Kinget, 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE J. Solid State Circuits 40, 2373–2387 (2005)

    Article  Google Scholar 

  5. W.-Y. Chiu, J.-W. Horng, High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs. IEEE Trans. Circuits Syst. II 54, 649–652 (2007)

    Article  Google Scholar 

  6. W. Chiu, S.I. Liu, H.W. Tsao, J.J. Chen, CMOS differential difference current conveyors and their applications. IEE Proc. Circuits Devices Syst. 143, 91–96 (1996)

    Article  Google Scholar 

  7. K. Ghosh, B.N. Ray, CCII-based nth-order mixed mode elliptic filter with grounded R and C. J. Circuits Syst. Comput. 24, 1550035 (2015)

    Article  Google Scholar 

  8. D. Goyal, P. Varshney, CCII and RC fractance based fractional order current integrator. Microelectron. J. 65, 1–10 (2017)

    Article  Google Scholar 

  9. S.-C. Huang, M. Ismail, S.R. Zarabadi, A wide range differential difference amplifier: a basic block for analog signal processing in MOS technology. IEEE Trans. Circuits Syst. II 40, 289–301 (1993)

    Article  Google Scholar 

  10. M.A. Ibrahim, H. Kuntman, O. Cicekoglu, Single DDCC biquads with high input impedance and minimum number of passive elements. Analog Integr. Circuits Signal Process. 43, 71–79 (2005)

    Article  Google Scholar 

  11. N.A. Khalil, L.A. Said, A.G. Radwan, A.M. Soliman, Generalized two-port network based fractional order filters. AEU Int. J. Electron. Commun. 104, 128–146 (2019)

    Article  Google Scholar 

  12. F. Khateb, The experimental results of the bulk-driven quasi-floating-gate MOS transistor. AEU Int. J. Electron. Commun. 100, 462–466 (2015)

    Article  Google Scholar 

  13. F. Khateb, W. Jaikla, M. Kumngern, P. Prommee, Comparative study of sub-volt differential difference current conveyors. Microelectron. J. 44, 1278–1284 (2013)

    Article  Google Scholar 

  14. F. Khateb, T. Kulej, M. Kumngern, W. Jaikla, R.K. Ranjan, Comparative performance study of multiple-input bulk-driven and multiple-input bulk-driven quasi-floating-gate DDCCs. AEU Int. J. Electron. Commun. 108, 19–28 (2019)

    Article  Google Scholar 

  15. F. Khateb, T. Kulej, M. Kumngern, 0.3 V bulk-driven current conveyor. IEEE Access 7, 65122–65128 (2019)

    Article  Google Scholar 

  16. F. Khateb, T. Kulej, M. Kumngern, C. Psychalinos, Multiple-input bulk-driven MOS transistor for low-voltage low-frequency applications. Circuits Syst. Signal Process. 38, 2829–2845 (2019)

    Article  Google Scholar 

  17. F. Khateb, T. Kulej, H. Veldandi, W. Jaikla, Multiple-input bulk-driven quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits. AEU Int. J. Electron. Commun. 100, 32–38 (2019)

    Article  Google Scholar 

  18. F. Khateb, M. Kumngern, S. Vlassis, C. Psychalinos, Differential difference current conveyor using bulk-driven technique for ultra-low-voltage applications. Circuits Syst. Signal Process. 33, 159–176 (2014)

    Article  Google Scholar 

  19. F. Khateb, M. Kumngern, T. Kulej, V. Kledrowetz, Low-voltage fully differential difference transconductance amplifier. IET Circuits Devices Syst. 12, 73–81 (2018)

    Article  Google Scholar 

  20. T. Kulej, F. Khateb, Sub 0.5-V bulk-driven winner take all circuit based on a new voltage follower. Analog Integr. Circuits Signal Process. 90, 687–691 (2017)

    Article  Google Scholar 

  21. M. Kumngern, F. Khateb, K. Dejhan, P. Phasukkit, S. Tungjitkusolmun, Voltage-mode multifunction biquadratic filters using new ultra-low-power differential difference current conveyors. Radioengineering 22, 448–457 (2013)

    Google Scholar 

  22. M. Kumngern, U. Torteanchai, S. Yutthanaboon, F. Khateb, Sub-volt bulk-driven transconductance amplifier and filter application, in Proceedings of 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), China (2018), pp. 1–5

  23. S.-Y. Lee, C.-J. Cheng, Systematic design and modelling of a OTA-C filter for portable ECG detection. IEEE Trans. Biomed. Circuits Syst. 3, 53–64 (2009)

    Article  Google Scholar 

  24. S.K. Mishra, M. Gupta, D.K. Upadhyay, Design and implementation of DDCC-based fractional-order oscillator. Int. J. Electron. 106, 581–598 (2019)

    Article  Google Scholar 

  25. A. Monpapassorn, K. Dejhan, F. Cheevasuvit, A full-wave rectifier using a current conveyor and current mirrors. Int. J. Electron. 88, 751–758 (2001)

    Article  Google Scholar 

  26. E. Sackinger, W. Guggenbuhl, A versatile building block: the CMOS differential difference amplifier. IEEE J. Solid State Circuits 22, 287–294 (1987)

    Article  Google Scholar 

  27. A. Sedra, K.C. Smith, A second-generation current conveyor and its applications. IEEE Trans. Circuits Theory 17, 132–134 (1970)

    Article  Google Scholar 

  28. V. Stornelli, G. Ferri, L. Pantoli, G. Barile, S. Pennisi, A rail-to-rail constant-gm CCII for instrumentation amplifier applications. AEU Int. J. Electron. Commun. 91, 103–109 (2018)

    Article  Google Scholar 

  29. S. Szczepanski, J. Jakusz, R. Schaumann, A linear fully balanced CMOS OTA for VHF filtering applications. IEEE Trans. Circuits Syst. II 44, 174–187 (1997)

    Article  Google Scholar 

  30. C.-Y. Sun, S.-Y. Lee, A fifth-order butterworth OTA-C LPF with multiple-output differential-input OTA for ECG applications. IEEE Trans. Circuits Syst. II 65, 421–425 (2018)

    Article  Google Scholar 

  31. E. Yuce, S. Minaei, Realization of arbitrary current transfer functions based on commercially available CCII + s. Int. J. Circuit Theory Appl. 42, 659–670 (2014)

    Article  Google Scholar 

  32. X. Zhang, E.I. El-Masry, A novel CMOS OTA based on body-driven MOSFETs and its applications in OTA-C filters. IEEE Trans. Circuits Syst. I 54, 1204–1212 (2007)

    Article  Google Scholar 

  33. T.-T. Zhang, P.-I. Mak, M.-I. Vai, P.-U. Mak, M.-K. Law, S.-H. Pun, F. Wan, R.P. Martins, 15-nW biopotential LPFs in 0.35-μm CMOS using subthreshold-source-follower biquads with and without gain compensation. IEEE Trans. Biomed. Circuits Syst. 7, 690–702 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by King Mongkut’s Institute of Technology Ladkrabang Under Grant KREF026201. Research described in this paper was financed by the National Sustainability Program Under Grant LO1401. For the research, infrastructure of the SIX Center was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montree Kumngern.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumngern, M., Khateb, F. & Kulej, T. 0.3 V Differential Difference Current Conveyor Using Multiple-Input Bulk-Driven Technique. Circuits Syst Signal Process 39, 3189–3205 (2020). https://doi.org/10.1007/s00034-019-01292-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01292-x

Keywords

Navigation