Skip to main content
Log in

DOA Estimation of Coherent Signals Based on the Sparse Representation for Acoustic Vector-Sensor Arrays

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper focuses on the problem of the DOA estimation of coherent signals for the acoustic vector-sensor arrays (AVSAs) in the presence of the isotropic ambient noise. We propose a high-resolution DOA estimation method based on the acoustic intensity principle and the sparse representation technique. First, two cross-covariance matrices are constructed by employing the acoustic pressure and particle velocity components of the AVSA, which eliminates the isotropic noise. Then, in order to fully explore the DOA information of the particle velocity components, an augmented matrix is formed based on the two cross-covariance matrices. We observe an interesting fact that the left singular vector corresponding to the maximum singular value of the augmented cross-covariance matrix is the linear combination of all the signal steering vectors. Based on this fact, a high-resolution DOA estimation algorithm is developed via sparsely representing the left singular vector. This method does not require the prior knowledge of the noise variance or the number of signals to construct the sparse representation model. Simulation and experimental results demonstrate the proposed method outperforms the MUSIC method based on the forward/backward spatial smoothing and some existing sparse representation methods in estimation accuracy and angular resolution, especially in the cases of a low signal-to-noise ratio and/or coherent signals with small angular separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Bai, Y. Jiang, C. Zhao, Detection of number of sources and direction of arrival estimation based on the combined information processing of pressure and particle velocity using acoustic vector sensor array. Acta Acust. 33(1), 56–61 (2008)

    Google Scholar 

  2. X. Bai, D. Yang, C. Zhao, Coherent signal-subspace method based on combined information processing of pressure and particle velocity using the acoustic vector sensor array. Acta Acust. 31(5), 410–417 (2006)

    Google Scholar 

  3. H. Chen, J. Zhao, Wideband MVDR beamforming for acoustic vector sensor linear array. IEE Proc. Radar Sonar Navig. 151(3), 158–162 (2004)

    Google Scholar 

  4. H. Chen, J. Zhao, Coherent signal-subspace processing of acoustic vector sensor array for DOA estimation of wideband sources. Signal Process. 85(4), 837–847 (2005)

    MATH  Google Scholar 

  5. J. Dai, X. Xu, D. Zhao, Direction-of-arrival estimation via real-valued sparse representation. IEEE Antennas Wirel. Propag. Lett. 12, 376–379 (2013)

    Google Scholar 

  6. M. Hawkes, A. Nehorai, Acoustic vector-sensor correlations in ambient noise. IEEE J. Ocean. Eng. 26(3), 337–347 (2001)

    Google Scholar 

  7. M. Hawkes, A. Nehorai, Acoustic vector-sensor beamforming and Capon direction estimation. IEEE Trans. Signal Process. 46(9), 2291–2304 (1998)

    Google Scholar 

  8. M. Hawkes, A. Nehorai, P. Stoica, Performance breakdown of subspace-based methods: prediction and cure, in Processding of IEEE International Conference on Acoustics, Speech, and Signal Processing, Satl Late City, UT, USA (2001), pp. 4005–4008

  9. M. Hawkes, A. Nehorai, Wideband source localization using a distributed acoustic vector-sensor array. IEEE Trans. Signal Process. 51(6), 1479–1491 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Z.-Q. He, Z.-P. Shi, L. Huang, Covariance sparsity-aware DOA estimation for nonuniform noise. Digit. Signal Process. 28, 75–81 (2014)

    Google Scholar 

  11. N. Hu, Z. Ye, X. Xu, M. Bao, DOA estimation for sparse array via sparse signal reconstruction. IEEE Trans. Aerosp. Electron. Syst. 49(2), 760–773 (2013)

    Google Scholar 

  12. N. Hu, Z. Ye, D. Xu, S. Cao, A sparse recovery algorithm for DOA estimation using weighted subspace fitting. Signal Process. 92(10), 2566–2570 (2012)

    Google Scholar 

  13. M.M. Hyder, K. Mahata, Direction-of-arrival estimation using a mixed \(\ell _{2,0}\) norm approximation. IEEE Trans. Signal Process. 58(9), 4646–4655 (2010)

    MathSciNet  MATH  Google Scholar 

  14. X. Jing, X. Liu, H. Liu, A sparse recovery method for DOA estimation based on the sample covariance vectors. Circuits Syst. Signal Process. 36(3), 1066–1084 (2017)

    MATH  Google Scholar 

  15. J. Li, D. Jiang, X. Zhang, Sparse representation based two-dimensional direction of arrival estimation using co-prime array. Multidimens. Syst. Signal Process. 29(1), 35–47 (2018)

    MathSciNet  Google Scholar 

  16. B. Li, B. Xu, Y. Yuan, Preestimation-based array interpolation approach to coherent source localization using multiple sparse subarrays. IEEE Signal Process. Lett. 16, 81–84 (2009)

    Google Scholar 

  17. M.S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, Applications of second-order cone programming. Linear Algebra Appl. 284(13), 193–228 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Z. Liu, Z. Huang, Y. Zhou, Array signal processing via sparsity-inducing representation of the array covariance matrix. IEEE Trans. Aerosp. Electron. Syst. 49(3), 1710–1724 (2013)

    Google Scholar 

  19. Z. Liu, X. Ruan, J. He, Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array. Multidimens. Syst. Signal Process. 24(1), 105–120 (2013)

    MathSciNet  MATH  Google Scholar 

  20. S. Liu, L. Yang, Y. Xie et al., 2D DOA estimation for coherent signals with acoustic vector-sensor array. Wirel. Pers. Commun. 95(2), 1285–1297 (2017)

    Google Scholar 

  21. D. Malioutov, M. Cetin, A.S. Willsky, A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005)

    MathSciNet  MATH  Google Scholar 

  22. K.G. Nagananda, G.V. Anand, Subspace intersection method of high-resolution bearing estimation in shallow ocean using acoustic vector sensors. Signal Process. 90(1), 105–118 (2010)

    MATH  Google Scholar 

  23. A. Nehorai, E. Paldi, Acoustic vector-sensor array processing. IEEE Trans. Signal Process. 42(9), 2481–2491 (1994)

    Google Scholar 

  24. P. Palanisamy, N. Kalyanasundaram, P.M. Swetha, Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array. Signal Process. 92(1), 19–28 (2012)

    Google Scholar 

  25. S.U. Pillai, B.H. Kwon, Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Signal Process. 37(1), 8–15 (1989)

    MATH  Google Scholar 

  26. T.-J. Shan, M. Wax, T. Kailath, On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. Acoust. Speech Signal Process. 33(4), 806–811 (1985)

    Google Scholar 

  27. S.-G. Shi, Y. Li, Z.-R. Zhu, J. Shi, Real-valued robust DOA estimation method for uniform circular acoustic vector sensor arrays based on worst-case performance optimization. Appl. Acoust. 148, 495–502 (2019)

    Google Scholar 

  28. P. Stoica, P. Babu, J. Li, SPICE: a sparse covariance-based estimation method for array processing. IEEE Trans. Signal Process. 59(2), 629–638 (2011)

    MathSciNet  MATH  Google Scholar 

  29. P. Tichavský, K.T. Wong, M.D. Zoltowski, Near-field/far-field azimuth and elevation angle estimation using a single vector hydrophone. IEEE Trans. Signal Process. 49(11), 2498–2510 (2001)

    Google Scholar 

  30. K.T. Wong, Acoustic vector-sensor FFH “Blind” beamforming & geolocation. IEEE Trans. Aerosp. Electron. Syst. 46(1), 444–449 (2010)

    Google Scholar 

  31. M. Wax, J. Sheinvald, Direction finding of coherent signals via spatial smoothing for uniform circular arrays. IEEE Trans. Antennas Propag. 42(5), 613–620 (1994)

    Google Scholar 

  32. J. Wen, B. Liao, C. Guo, Spatial smoothing based methods for direction-of-arrival estimation of coherent signals in nonuniform noise. Digit. Signal Process. 67, 116–122 (2017)

    Google Scholar 

  33. K.T. Wong, M.D. Zoltowski, Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace. IEEE J. Ocean. Eng. 25(2), 262–273 (2000)

    Google Scholar 

  34. K.T. Wong, M.D. Zoltowski, Extended-aperture underwater acoustic multisource azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones. IEEE J. Ocean. Eng. 22(4), 659–672 (1997)

    Google Scholar 

  35. K.T. Wong, M.D. Zoltowski, Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones. IEEE Trans. Signal Process. 47(12), 3250–3260 (1999)

    Google Scholar 

  36. Y. Wu, G. Li, Z. Hu et al., Unambiguous directions of arrival estimation of coherent sources using acoustic vector sensor linear arrays. IET Radar Sonar Navig. 9(3), 318–323 (2015)

    Google Scholar 

  37. S. Yan, Optimal design of modal beamformers for circular arrays. J. Acoust. Soc. Am. 138(4), 2140–2151 (2015)

    Google Scholar 

  38. Y. Yang, Y. Zhang, L. Yang, Wideband sparse spatial spectrum estimation using matrix filter with nulling in a strong interference environment. J. Acoust. Soc. Am. 143(6), 3891–3898 (2018)

    Google Scholar 

  39. Z. Ye, X. Xu, DOA estimation by exploiting the symmetric configuration of uniform linear array. IEEE Trans. Antennas Propag. 55(12), 3716–3720 (2007)

    Google Scholar 

  40. J. Yin, T. Chen, Direction-of-arrival estimation using a sparse representation of array covariance vectors. IEEE Trans. Signal Process. 59(9), 4489–4493 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Y. Zhao, L. Zhang, Y. Gu, Y. Guo, J. Zhang, Efficient sparse representation method for wideband DOA estimation using focusing operation. IET Rader Sonar Navig. 11(11), 1673–1678 (2017)

    Google Scholar 

  42. Y.-X. Zou, B. Li, C.H. Ritz, Multi-source DOA estimation using an acoustic vector sensor array under a spatial sparse representation framework. Circuits Syst. Signal Process. 35(3), 993–1020 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11674074 and 11674075, 61701133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Li, Y., Yang, D. et al. DOA Estimation of Coherent Signals Based on the Sparse Representation for Acoustic Vector-Sensor Arrays. Circuits Syst Signal Process 39, 3553–3573 (2020). https://doi.org/10.1007/s00034-019-01323-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01323-7

Keywords

Navigation