Skip to main content
Log in

Gram–Schmidt Orthogonalization-Based Audio Multiple Watermarking Scheme

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes an audio multi-watermarking scheme based on Gram–Schmidt orthogonalization. A random signal generator is applied to the host audio signal to generate the target segment for the local watermarking, thus improving the imperceptibility compared with the conventional global watermarking. The discrete cosine transform low-frequency coefficients of high stability are selected as watermark embedder, to ensure the robustness of this scheme. Consequently, the Gram–Schmidt orthogonalization process is employed to generate a set of orthogonal vectors, into which the spread transform dither modulation is applied to, respectively, embed the multiple watermark messages simultaneously. The orthogonality ensures that multiple watermark messages can be independently extracted without compromising the robustness against attacks. By embedding the multiple watermark messages into the same segment of the host audio signal, the watermark embedding capacity can be greatly enhanced while preserving the imperceptibility and robustness. A variety of experiments are conducted, and the results indicate the good performance of the proposed scheme. The proposed scheme has demonstrated superior performance gains over the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Arnold, X.M. Chen, P. Baum, U. Gries, G. Doerr, A phase-based audio watermarking system robust to acoustic path propagation. IEEE Trans. Inf. Forensics Secur. 9(3), 411–425 (2014)

    Article  Google Scholar 

  2. N. Arnold, Z. Huang, Blind detection of multiple audio watermarks, in Proceedings First International Conference on WEB Delivering of Music (IEEE, 2001), pp. 4–11

  3. V. Bhat, I. Sengupta, A. Das, An adaptive audio watermarking based on the singular value decomposition in the wavelet domain. Digit. Signal Process. 20(6), 1547–1558 (2010)

    Article  Google Scholar 

  4. B. Chen, G.W. Wornell, Provably robust digital watermarking, in Photonics East (1999), pp. 43–54

  5. Y.-H. Chen, J.-C. Chen, A new multiple audio watermarking algorithm applying DS-CDMA, in 2009 International Conference on Machine Learning and Cybernetics (IEEE, 2009), pp. 2205–2210

  6. W. Cheney, D. Kincaid, Linear Algebra: Theory and Applications (The Australian Mathematical Society, Canberra, 2009), p. 110

    MATH  Google Scholar 

  7. D.J. Coumou, G. Sharma, Insertion, deletion codes with feature-based embedding: a new paradigm for watermark synchronization with applications to speech watermarking. IEEE Trans. Inf. Forensics Secur. 3(2), 153–165 (2008)

    Article  Google Scholar 

  8. I.J. Cox, J. Kilian, F.T. Leighton, T. Shamoon, Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)

    Article  Google Scholar 

  9. I.J. Cox, G. Doërr, T. Furon, T. Kalker, M. Malkin, A. Westfeld, K. Lee, A. Westfeld, S. Lee, G. Xuan, Digital watermarking. Lect. Notes Comput. Sci. 11(3–4), 414 (2002)

    Google Scholar 

  10. EBU, SQAM—Sound Quality Assessment Material (2001). http://sound.media.mit.edu/resources/mpeg4/audio/sqam/. Accessed 08 June 2018

  11. N. El Hamdouni, A. Adib, S.D. Larbi, M. Turki, A blind digital audio watermarking scheme based on EMD and UISA techniques. Multimed. Tools Appl. 64(3), 809–829 (2013)

    Article  Google Scholar 

  12. M.-Q. Fan, H.-X. Wang, Statistical characteristic-based robust audio watermarking for resolving playback speed modification. Digit. Signal Process. 21(1), 110–117 (2011)

    Article  Google Scholar 

  13. H.-T. Hu, J.-R. Chang, Efficient and robust frame-synchronized blind audio watermarking by featuring multilevel DWT and DCT. Clust. Comput. 20(1), 805–816 (2017). https://doi.org/10.1007/s10586-017-0770-2

    Article  Google Scholar 

  14. G. Hua, J. Goh, V.L. Thing, Time-spread echo-based audio watermarking with optimized imperceptibility and robustness. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 23(2), 227–239 (2015)

    Article  Google Scholar 

  15. M.-J. Hwang, J. Lee, M. Lee, H.-G. Kang, SVD-based adaptive QIM watermarking on stereo audio signals. IEEE Trans. Multimed. 20(1), 45–54 (2018)

    Article  Google Scholar 

  16. N.K. Kalantari, M.A. Akhaee, S.M. Ahadi, H. Amindavar, Robust multiplicative patchwork method for audio watermarking. IEEE Trans. Audio Speech Lang. Process. 17(6), 1133–1141 (2009). https://doi.org/10.1109/tasl.2009.2019259

    Article  Google Scholar 

  17. H. Kang, K. Yamaguchi, B. Kurkoski, K. Yamaguchi, K. Kobayashi, Full-index-embedding patchwork algorithm for audio watermarking, in IEICE—Transactions on Information and Systems E91-D (11) (2008), pp. 2731–2734

  18. A. Kanhe, A. Gnanasekaran, A blind audio watermarking scheme employing DCT–HT–SD technique. Circuits Syst. Signal Process. 38, 1–18 (2018)

    Google Scholar 

  19. K. Khaldi, A. Boudraa, Audio watermarking via EMD. IEEE Trans. Audio Speech Lang. Process. 21(3), 675–680 (2013)

    Article  Google Scholar 

  20. P. Kumsawat, A genetic algorithm optimization technique for multiwavelet-based digital audio watermarking. EURASIP J. Adv. Signal Process. 2010(1), 471842 (2010)

    Article  Google Scholar 

  21. S.C. Kushwaha, P. Das, M. Chakraborty, Multiple watermarking on digital audio based on DWT technique, in 2015 International Conference on Communications and Signal Processing (ICCSP) (IEEE, 2015), pp. 0303–0307

  22. B. Lei, F. Zhou, E.-L. Tan, D. Ni, H. Lei, S. Chen, T. Wang, Optimal and secure audio watermarking scheme based on self-adaptive particle swarm optimization and quaternion wavelet transform. Sig. Process. 113, 80–94 (2015)

    Article  Google Scholar 

  23. L. Li, X. Fang, Audio watermarking robust against playback speed modification. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 94(12), 2889–2893 (2011)

    Article  Google Scholar 

  24. M. Li, X. Yuan, Robust digital image watermarking using distortion-compensated dither modulation, in Ninth International Conference on Graphic and Image Processing (ICGIP 2017) (International Society for Optics and Photonics, 2018), p. 106154U

  25. M. Li, Z. Deng, X. Yuan, Image segmentation-based robust feature extraction for color image watermarking, in Ninth International Conference on Graphic and Image Processing (SPIE, 2018), p. 7

  26. M. Li, X. Yuan, J. Li, Dual-tree complex wavelet transform based audio watermarking using distortion-compensated dither modulation. IEEE Access 6, 60834–60842 (2018)

    Article  Google Scholar 

  27. H. Murata, A. Ogihara, A. Shiozaki, Multichannel audio watermarking method suitable for multiple watermarks, in 2008 International Symposium on Communications and Information Technologies (IEEE, 2008), pp. 375–379

  28. A. Nadeau, G. Sharma, An audio watermark designed for efficient and robust resynchronization after analog playback. IEEE Trans. Inf. Forensics Secur. 12(6), 1393–1405 (2017)

    Article  Google Scholar 

  29. A. Ogihara, H. Murata, M. Iwata, A. Shiozaki, Multi-layer audio watermarking based on amplitude modification, in 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IEEE, 2009), pp. 68–71

  30. C.-M. Pun, X.-C. Yuan, Robust segments detector for de-synchronization resilient audio watermarking. IEEE Trans. Audio Speech Lang. Process. 21(11), 2412–2424 (2013)

    Article  Google Scholar 

  31. R. Rigoni, P.G. Freitas, M.C. Farias, Detecting tampering in audio-visual content using QIM watermarking. Inf. Sci. 328, 127–143 (2016)

    Article  Google Scholar 

  32. A. Takahashi, R. Nishimura, Y. Suzuki, Multiple watermarks for stereo audio signals using phase-modulation techniques. IEEE Trans. Signal Process. 53(2), 806–815 (2005)

    Article  MathSciNet  Google Scholar 

  33. M. Unoki, R. Miyauchi, Robust, Blindly-detectable, and semi-reversible technique of audio watermarking based on cochlear delay characteristics. IEICE Trans. Inf. Syst. E98.D(1), 38–48 (2015)

    Article  Google Scholar 

  34. X.-Y. Wang, H. Zhao, A novel synchronization invariant audio watermarking scheme based on DWT and DCT. IEEE Trans. Signal Process. 54(12), 4835–4840 (2006)

    Article  Google Scholar 

  35. X. Wang, W. Qi, P. Niu, A new adaptive digital audio watermarking based on support vector regression. IEEE Trans. Audio Speech Lang. Process. 15(8), 2270–2277 (2007)

    Article  Google Scholar 

  36. P.H. Wong, O.C. Au, Y.M. Yeung, Novel blind multiple watermarking technique for images. IEEE Trans. Circuits Syst. Video Technol. 13(8), 813–830 (2003)

    Article  Google Scholar 

  37. S. Wu, J. Huang, D. Huang, Y.Q. Shi, Efficiently self-synchronized audio watermarking for assured audio data transmission. IEEE Trans. Broadcast. 51(1), 69–76 (2005)

    Article  Google Scholar 

  38. Y. Xiang, I. Natgunanathan, D. Peng, W. Zhou, S. Yu, A dual-channel time-spread echo method for audio watermarking. IEEE Trans. Inf. Forensics Secur. 7(2), 383–392 (2012)

    Article  Google Scholar 

  39. Z. Xu, C. Ao, B. Huang, Channel capacity analysis of the multiple orthogonal sequence spread spectrum watermarking in audio signals. IEEE Signal Process. Lett. 23(1), 20–24 (2016)

    Article  Google Scholar 

  40. X.-C. Yuan, M. Li, Local multi-watermarking method based on robust and adaptive feature extraction. Sig. Process. 149, 103–117 (2018)

    Article  Google Scholar 

  41. X.-C. Yuan, C.-M. Pun, C.P. Chen, Robust Mel-Frequency Cepstral coefficients feature detection and dual-tree complex wavelet transform for digital audio watermarking. Inf. Sci. 298, 159–179 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Science and Technology Development Fund, Macau SAR (File No. 051/2016/A2), and the National Natural Science Foundation of China (Grant No. 61902448).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochen Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Li, M. Gram–Schmidt Orthogonalization-Based Audio Multiple Watermarking Scheme. Circuits Syst Signal Process 39, 3958–3977 (2020). https://doi.org/10.1007/s00034-020-01347-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01347-4

Keywords

Navigation