Skip to main content
Log in

Subspace-Based Deterministic Identification of MIMO Linear State-Delayed Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A subspace-based deterministic identification method is proposed for MIMO linear systems with time delay in their state variables. This method can estimate the matrices of the state-delayed system, its order and the amount of time delay. First, by extending the orthogonal decomposition subspace method for state-delayed systems, the augmented system matrices which include the original system matrices are identified. Then, an algorithm is presented to find a similarity transformation that converts the augmented matrices to a special form through which matrices of the state-delayed system can be extracted. The values of the time delay and model order are estimated by introducing appropriate criteria. Finally, three examples are provided to validate the proposed identification method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I.B. Abdelwahed, A. Mbarek, K. Bouzrara, Adaptive MPC based on MIMO ARX-Laguerre model. ISA Trans. 67, 330–347 (2017)

    Article  Google Scholar 

  2. H. Akaike, A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974)

    Article  MathSciNet  Google Scholar 

  3. J.J. Batzel, H.T. Tran, Stability of the human respiratory control system I. Analysis of a two-dimensional delay state-space model. J. Math. Biol. 41, 45–79 (2000)

    Article  MathSciNet  Google Scholar 

  4. L. Belkoura, M. Dambrine, Y. Orlov et al., Identifiability and identification of linear systems with delays, in Advances in Time-Delay Systems, ed. by S.I. Niculescu, K. Gu (Springer, Berlin, 2004), pp. 123–135

    Chapter  Google Scholar 

  5. L. Belkoura, Y. Orlov, Identifiability analysis of linear delay-differential systems. IMA J. Math. Control Inf. 19, 73–81 (2002)

    Article  MathSciNet  Google Scholar 

  6. E.K. Boukas, Z.K. Liu, Deterministic and Stochastic Time Delay Systems (Springer, Boston, 2002)

    Book  Google Scholar 

  7. D. Di Ruscio, Combined deterministic and stochastic system identification and realization: SDR—a subspace approach based on observations. Model. Identif. Control 17(3), 193–230 (1996)

    Article  MathSciNet  Google Scholar 

  8. F. Ding, Y. Gu, Performance analysis of the auxiliary model-based stochastic gradient parameter estimation algorithm for state-space systems with one-step state delay. Circuits Syst. Signal Process. 32, 585–599 (2013)

    Article  MathSciNet  Google Scholar 

  9. B. Ding, L. Xie, C. Wenjian, Robust MPC for polytopic uncertain systems with time-varying delays. Int. J. Control 31(8), 1239–1252 (2008)

    Article  MathSciNet  Google Scholar 

  10. W. Favoreel, B. De Moor, P. Van Overschee, Subspace state space system identification for industrial processes. J. Process. Control 10, 149–155 (2000)

    Article  Google Scholar 

  11. Y. Gu, F. Ding, Auxiliary model based least squares identification method for a state space-model with a unit time-delay. Appl. Math. Model. 36, 5773–5779 (2012)

    Article  MathSciNet  Google Scholar 

  12. Y. Gu, F. Ding, Parameter estimation for a multivariable state space system with d-step state-delay. J. Frankl. Inst. 350, 724–736 (2013)

    Article  MathSciNet  Google Scholar 

  13. Y. Gu, F. Ding, J. Li, State filtering and parameter estimation for linear systems with d-step state-delay. IET Signal Process. 8(6), 639–646 (2014)

    Article  Google Scholar 

  14. Y. Gu, R. Ding, A least squares identification algorithm for a state space model with multi-state delays. Appl. Math. Lett. 26, 748–753 (2013)

    Article  MathSciNet  Google Scholar 

  15. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Springer, Boston, 2003)

    Book  Google Scholar 

  16. Y. Gu, X. Lu, R. Ding, Parameter and state estimation algorithm for a state space model with a one unit state delay. Circuits Syst. Signal Process. 32(5), 2267–2280 (2013)

    Article  MathSciNet  Google Scholar 

  17. T. Katayama, Subspace Methods for System Identification (Springer, Heidelberg, 2005)

    Book  Google Scholar 

  18. T. Katayama, H. Ase, Linear approximation and identification of MIMO Wiener–Hammerstein systems. Automatica 71, 118–124 (2016)

    Article  MathSciNet  Google Scholar 

  19. S.M. Kissler, C. Cichowitz, S. Sankaranarayanan et al., Determination of personalized diabetes treatment plans using a two-delay model. J. Theor. Biol. 359, 101–111 (2014)

    Article  MathSciNet  Google Scholar 

  20. V. Kolmanovskii, A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations (Springer, Dordrecht, 1999)

    Book  Google Scholar 

  21. W.E. Larimore, Canonical variate analysis in identification, filtering and adaptive control, in: Proceedings of the 29th Conference on Decision and Control, pp. 596–604, 1990

  22. B. Lehman, E. Verriest, Stability of a continuous stirred reactor with delay in the recycle stream, in: Proceedings of the 30th Conference on Decision and Control, pp. 1875–1876, 1991

  23. L. Ljung, System Identification: Theory for the User (Prentice-Hall, Englewood Cliffs, 1995)

    MATH  Google Scholar 

  24. V. Lunel, M. Sjoerd, Identification problems in functional differential equations, in: Proceedings of the 36th IEEE Conference on Decision and Control, pp. 4409–4413, 1997

  25. Y. Orlov, L. Belkoura, J.P. Richard et al., Identifiability analysis of linear time-delay systems, in: Proceedings of the 40th IEEE Conference on Decision and Control, pp. 4776–4781, 2001

  26. Y. Orlov, L. Belkoura, J.P. Richard et al., On identifiability of linear time-delay systems. IEEE Trans. Autom. Control 47, 1319–1324 (2002)

    Article  MathSciNet  Google Scholar 

  27. Y. Orlov, L. Belkoura, J.P. Richard et al., Online parameter identification of linear time-delay systems, in: Proceedings of the 41st IEEE Conference on Decision and Control, pp. 630–635, 2002

  28. Y. Orlov, L. Belkoura, J.P. Richard et al., Adaptive identification of linear time-delay systems. Int. J. Robust Nonlinear Control 13, 857–872 (2003)

    Article  MathSciNet  Google Scholar 

  29. Y. Orlov, I.V. Kolmanovsky, O. Gomez, On-line identification of SISO linear time-delay systems from output measurements: theory and applications to engine transient fuel identification, in: Proceedings of the 2006 American Control Conference, pp. 1179–1184, 2006

  30. J.H. Park, S. Han, C.G. Park et al., On-line model parameter estimations for time-delay systems, in: Proceedings of the 7th Asian Control Conference, pp. 626–629, 2009

  31. G. Picci, T. Katayama, Stochastic realization with exogenous inputs and ‘subspace-methods’ identification. Signal Process. 52, 145–160 (1996)

    Article  Google Scholar 

  32. C.D. Schaper, W.E. Larimore, D.E. Sborg et al., Identification of chemical processes using canonical variate analysis. Comput. Chem. Eng. 18(1), 55–69 (1994)

    Article  Google Scholar 

  33. G.W. Stewart, Perturbation theory for the singular value decomposition. UMIACS-TR-90-124 (1990)

  34. A.J. Van der Veen, E.F. Deprettere, A.L. Swindlehurst, Subspace based signal analysis using singular value decomposition. Proc. IEEE 81, 1277–1308 (1993)

    Article  Google Scholar 

  35. P. Van Overschee, B. De Moor, N4SID: subspace algorithms for the identification of combined deterministic–stochastic systems. Automatica 30, 75–93 (1994)

    Article  Google Scholar 

  36. P. Van Overschee, B. De Moor, Subspace identification for linear systems: theory, implementation, applications (Kluwer Academic Publishers, Norwell, 1996)

    Book  Google Scholar 

  37. M. Verhaegen, Identification of the deterministic part of MIMO state-space models given in innovations form from input–output data. Automatica 30, 61–74 (1994)

    Article  MathSciNet  Google Scholar 

  38. M. Verhaegen, P. Dewilde, Subspace model identification part 1. The output-error state-space model identification class of algorithms. Int. J. Control 56(5), 1187–1210 (1992)

    Article  Google Scholar 

  39. J. Wang, S.J. Qin, A new subspace identification approach based on principal component analysis. J. Process. Control 12, 841–855 (2002)

    Article  Google Scholar 

  40. L. Xu, F. Ding, Y. Gu et al., A multi-innovation state and parameter estimation algorithm for a state space system with d-step state-delay. Signal Process. 140, 97–103 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Barkhordari-Yazdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Assume similarity transformation matrix \( {\varvec{S}} \in {\mathbb{R}}^{(\tau + 1)n \times (\tau + 1)n} \) converts the estimated augmented matrices \( {\varvec{\hat{\bar{A}}}} \), \( {\varvec{\hat{\bar{B}}}} \), \( {\varvec{\hat{\bar{C}}}} \) to the following desired form,

$$ \begin{aligned} & {\varvec{\hat{\bar{A}}}}_{{{\varvec{desired}}}} = \left[ {\begin{array}{*{20}c} {\varvec{0}} & {\varvec{I}} & {\varvec{0}} & \ldots & {\varvec{0}} & {\varvec{0}} \\ {\varvec{0}} & {\varvec{0}} & {\varvec{I}} & {} & {\varvec{0}} & {\varvec{0}} \\ {} & {} & {} & {\varvec{O}} & {} & {} \\ {} & {} & {} & {} & {\varvec{I}} & {\varvec{0}} \\ {\varvec{0}} & {\varvec{0}} & {\varvec{0}} & {} & {\varvec{0}} & {\varvec{I}} \\ {{\hat{\varvec{A}}}_{{\varvec{2}}}^{{\varvec{d}}} } & {\varvec{0}} & {\varvec{0}} & \ldots & {\varvec{0}} & {{\hat{\varvec{A}}}_{{\varvec{1}}}^{{\varvec{d}}} } \\ \end{array} } \right], \, \quad {\varvec{\hat{\bar{B}}}}_{{{\varvec{desired}}}} = \left[ {\begin{array}{*{20}c} {\varvec{0}} \\ {\varvec{0}} \\ \vdots \\ {\varvec{0}} \\ {\varvec{0}} \\ {{\hat{\varvec{B}}}^{{\varvec{d}}} } \\ \end{array} } \right], \\ & \hat{{\bar{\varvec{C}}}}_{{{\varvec{desired}}}} = \left[ {\begin{array}{*{20}c} {\varvec{0}} & {\varvec{0}} & {\varvec{0}} & \ldots & {\varvec{0}} & \hat{\varvec{C}}^{{\varvec{d}}} \\ \end{array} } \right], \\ \end{aligned} $$
(49)

where \( {\hat{\varvec{A}}}_{{\varvec{1}}}^{{\varvec{d}}} , \, {\hat{\varvec{A}}}_{{\varvec{2}}}^{{\varvec{d}}} \in {\mathbb{R}}^{n \times n} \), \( {\hat{\varvec{B}}}^{{\varvec{d}}} \in {\mathbb{R}}^{n \times m} \) and \( {\hat{\varvec{C}}}^{{\varvec{d}}} \in {\mathbb{R}}^{p \times n} \). Therefore, we have,

$$ {\varvec{\hat{\bar{A}}}}_{{{\varvec{desired}}}} {\varvec{S}} = {\varvec{S\hat{\bar{A}}}}{ ,} $$
(50)
$$ {\varvec{\hat{\bar{B}}}}_{{{\varvec{desired}}}} = {\varvec{S\hat{\bar{B}}}}, $$
(51)
$$ {\varvec{\hat{\bar{C}}}}_{{{\varvec{desired}}}} = {\varvec{\hat{\bar{C}}S}}^{ - 1} . $$
(52)

Let us represent matrix \( {\varvec{S}} \) as

$$ {\varvec{S}} = \left[ {\begin{array}{*{20}c} {{\varvec{S}}_{{\varvec{1}}} } \\ {{\varvec{S}}_{{\varvec{2}}} } \\ \vdots \\ {{\varvec{S}}_{{{\varvec{\tau + 1}}}} } \\ \end{array} } \right], $$
(53)

where \( {\varvec{S}}_{{\varvec{1}}} , \, {\varvec{S}}_{{\varvec{2}}} , \, \ldots { , }{\varvec{S}}_{{{\varvec{\tau + 1}}}} \in {\mathbb{R}}^{n \times (\tau + 1)n} \). Then, Eq. (50) implies

$$ {\varvec{S}}_{{{\varvec{i + 1}}}} = {\varvec{S}}_{{\varvec{1}}} {\varvec{\hat{\bar{A}} }}^{i} { , }i = 1,2, \ldots ,\tau , $$
(54)
$$ \left[ {\begin{array}{*{20}c} {{\hat{\varvec{A}}}_{{\varvec{1}}}^{{\varvec{d}}} } & {\varvec{0}} & \ldots & {\varvec{0}} & {{\hat{\varvec{A}}}_{{\varvec{2}}}^{{\varvec{d}}} } \\ \end{array} } \right]{\varvec{S}} = {\varvec{S}}_{{{\varvec{\tau + 1}}}} {\varvec{\hat{\bar{A}}}}. $$
(55)

Since \( {\hat{\varvec{A}}}_{{\varvec{1}}}^{{\varvec{d}}} \) and \( {\hat{\varvec{A}}}_{{\varvec{2}}}^{{\varvec{d}}} \) are full matrices, Eq. (55) only causes the condition

$$ {\varvec{S}}_{{{\varvec{\tau + 1}}}} {\varvec{\hat{\bar{A}}S}}^{ - 1} (:,n + 1:\tau n) = {\varvec{0}}_{n,(\tau - 1)n} . $$
(56)

Now, we investigate Eq. (51). It is obvious from Eq. (51) that

$$ \left[ {\begin{array}{*{20}c} {{\varvec{S}}_{{\varvec{1}}} } \\ {{\varvec{S}}_{{\varvec{2}}} } \\ \vdots \\ {{\varvec{S}}_{{\varvec{\tau}}} } \\ \end{array} } \right]{\varvec{\hat{\bar{B}}}} = {\varvec{0}}_{\tau n \times m} . $$
(57)

Equations (57) and (54) imply that

$$ {\varvec{S}}_{{\varvec{1}}} [\begin{array}{*{20}c} {{\varvec{\hat{\bar{B}}}}} & {{\varvec{\hat{\bar{A}}\hat{\bar{B}}}}} & \ldots & {{\varvec{\hat{\bar{A}}}}^{{{\varvec{\tau - 1}}}} {\varvec{\hat{\bar{B}}}}} \\ \end{array} ] = {\varvec{0}}_{n \times \tau m} . $$
(58)

It can be concluded from Eq. (58) that the row vectors of matrix \( {\varvec{S}}_{{\varvec{1}}} \) are in the space spanned through the row vectors of \( \left( {{\text{null}}\{ [\begin{array}{*{20}c} {{\varvec{\hat{\bar{B}}}}} & {{\varvec{\hat{\bar{A}}\hat{\bar{B}}}}} & \ldots & {{\varvec{\hat{\bar{A}}}}^{\tau - 1} {\varvec{\hat{\bar{B}}}}} \\ \end{array} ]^{T} \} } \right)^{T} \), where \( {\text{null}}\{ .\} \) is the null space of a matrix. Let us define,

$$ {\varvec{F}} = \left[ {\begin{array}{*{20}c} {{\varvec{F}}_{{\varvec{1}}} } \\ {{\varvec{F}}_{{\varvec{2}}} } \\ \vdots \\ {{\varvec{F}}_{{\varvec{q}}} } \\ \end{array} } \right]\mathop = \limits^{\Delta } \left( {{\text{null}}\{ [\begin{array}{*{20}c} {{\varvec{\hat{\bar{B}}}}} & {{\varvec{\hat{\bar{A}}\hat{\bar{B}}}}} & \cdots & {{\varvec{\hat{\bar{A}}}}^{\tau - 1} {\varvec{\hat{\bar{B}}}}} \\ \end{array} ]^{T} \} } \right)^{T} , $$
(59)

in which, \( q = (\tau + 1)n{\text{ - columnrank}}\{ [\begin{array}{*{20}c} {{\varvec{\hat{\bar{B}}}}} & {{\varvec{\hat{\bar{A}}\hat{\bar{B}}}}} & \ldots & {{\varvec{\hat{\bar{A}}}}^{\tau - 1} {\varvec{\hat{\bar{B}}}}} \\ \end{array} ]\} \) and \( {\varvec{F}}_{{\varvec{1}}} , { }{\varvec{F}}_{{\varvec{2}}} , \, \ldots { , }{\varvec{F}}_{{\varvec{q}}} \in {\mathbb{R}}^{1 \times (\tau + 1)n} \) are the row vectors of matrix \( {\varvec{F}} \). Then, \( {\varvec{S}}_{{\varvec{1}}} \) must be as,

$$ {\varvec{S}}_{{\varvec{1}}} = {\varvec{ZF}}, $$
(60)

where \( {\varvec{Z}} \in {\mathbb{R}}^{n \times q} \).

Finally, investigating Eq. (52) implies,

$$ {\varvec{\hat{\bar{C}}S}}^{ - 1} (:,1:\tau n) = {\varvec{0}}_{p \times \tau n} . $$
(61)

Therefore, according to Eqs. (53), (54), (56), (60) and (61), the similarity transformation matrix \( {\varvec{S}} \) which transforms the identified augmented matrices to the desired form (49) can be considered as,

$$ {\varvec{S}} = \left[ {\begin{array}{*{20}c} {{\varvec{ZF}}} \\ {{\varvec{ZF\hat{\bar{A}}}}} \\ \vdots \\ {{\varvec{ZF\hat{\bar{A}}}}^{\tau } } \\ \end{array} } \right] $$
(62)

where \( {\varvec{Z}} \in {\mathbb{R}}^{n \times q} \) is a matrix such that the conditions

$$ \begin{aligned} & {\varvec{ZF\hat{\bar{A}}}}^{\tau + 1} {\varvec{S}}^{ - 1} (:,n + 1:\tau n) = {\varvec{0}}_{n \times (\tau - 1)n} , \\ & {\varvec{\hat{\bar{C}}S}}^{ - 1} (:,1:\tau n) = {\varvec{0}}_{p \times \tau n} , \\ \end{aligned} $$
(63)

be satisfied.

Now, we find a solution \( {\varvec{Z}} \in {\mathbb{R}}^{n \times q} \) for the special case \( \tau = 1 \). In this case, the similarity transformation is as

$$ {\varvec{S}} = \left[ {\begin{array}{*{20}c} {{\varvec{ZF}}} \\ {{\varvec{ZF\hat{\bar{A}}}}} \\ \end{array} } \right] \in {\mathbb{R}}^{2n \times 2n} $$
(64)

where \( {\varvec{Z}} \in {\mathbb{R}}^{n \times q} \) is a matrix such that \( {\varvec{\hat{\bar{C}}S}}^{ - 1} (:,1:n) = {\varvec{0}}_{p \times n} \). Therefore, the row vectors of matrix \( {\varvec{\hat{\bar{C}}}} \) must be in the space spanned through the row vectors of \( \left( {{\text{null}}\{ ({\varvec{S}}^{ - 1} (:,1:n))^{T} \} } \right)^{T} \). From \( {\varvec{SS}}^{ - 1} = {\varvec{I}} \), we have \( {\varvec{ZF\hat{\bar{A}}S}}^{ - 1} (:,1:n) = {\varvec{0}}_{n \times n} \). Since \( {\text{rank}}({\varvec{ZF\hat{\bar{A}}}}) = n \), \( {\varvec{ZF\hat{\bar{A}}}} \) can be considered as \( \left( {{\text{null}}\{ ({\varvec{S}}^{ - 1} (:,1:n))^{T} \} } \right)^{T} \). In summary,

$$ {\varvec{\hat{\bar{C}}}} = {\varvec{\beta ZF\hat{\bar{A}}}} , $$
(65)

where \( {\varvec{\beta}} \in {\mathbb{R}}^{p \times n} \).

Assume

$$ {\varvec{\hat{\bar{C}}}}_{{\varvec{s}}} = {\varvec{\beta}}_{{\varvec{1}}} {\varvec{ZF\hat{\bar{A}}}} , $$
(66)

where \( {\varvec{\beta}}_{{\varvec{1}}} \in {\mathbb{R}}^{l \times n} \) and \( {\varvec{\hat{\bar{C}}}}_{{\varvec{s}}} \in {\mathbb{R}}^{l \times 2n} \) contains the independent rows of \( {\varvec{\hat{\bar{C}}}} \), then Eq. (62) is satisfied. Without loss of generality, we consider \( {\varvec{\beta}}_{{\varvec{1}}} = [\begin{array}{*{20}c} {{\varvec{I}}_{{\varvec{l}}} } & {{\varvec{0}}_{{{\varvec{l \times (n - l)}}}} } \\ \end{array} ] \), then \( {\varvec{Z}}(1:l,:) = {\varvec{\hat{\bar{C}}}}_{{\varvec{s}}} /({\varvec{F\hat{\bar{A}}}}) \). There is no constraint on \( {\varvec{Z}}(l + 1:n,:) \in {\mathbb{R}}^{(n - l) \times q} \) unless it makes \( {\varvec{Z}} \) and \( {\varvec{S}} \) full rank.

Appendix 2

Let the characteristic polynomial of \( {\bar{\varvec{A}}} \) be given as

$$ \left| {\lambda {\varvec{I}} - {\bar{\varvec{A}}}} \right| = \lambda^{{n_{1} }} + \alpha_{1} \lambda^{{n_{1} - 1}} + \cdots \alpha_{{n_{1} }} , $$
(67)

and

$$ {\varvec{\Gamma}}_{{{\varvec{CP}}}}^{ \bot } \mathop = \limits^{\Delta } \left[ {\begin{array}{*{20}c} {\alpha_{{n_{1} }} {\varvec{I}}_{{\varvec{p}}} } & \ldots & {\alpha_{1} {\varvec{I}}_{{\varvec{p}}} } & {{\varvec{I}}_{{\varvec{p}}} } & {{\varvec{0}}_{{{\varvec{p \times p}}}} } & \ldots & {{\varvec{0}}_{{{\varvec{p \times p}}}} } \\ \end{array} } \right]^{T} \in {\mathbb{R}}^{kp \times p} . $$
(68)

Then, using the Cayley–Hamilton theorem, we derive

$$ {{\varvec{\Gamma}}_{{{\varvec{CP}}}}^{ \bot }}^{T} {\varvec{O}}_{{\varvec{k}}} = {\varvec{C}}(\alpha_{{n_{1} }} {\varvec{I}} + \cdots + \alpha_{{_{1} }} {\bar{\varvec{A}}}^{{n_{1} - 1}} + {\bar{\varvec{A}}}^{{n_{1} }} ) = {\varvec{0}}. $$
(69)

Premultiplying Eq. (7) with \( {{\varvec{\Gamma}}_{{{\varvec{CP}}}}^{ \bot }}^{T} \) implies

$$ {{\varvec{\Gamma}}_{{{\varvec{CP}}}}^{ \bot }}^{T} {\varvec{y}}_{{\varvec{k}}}^{{\varvec{d}}} (t) = {{\varvec{\Gamma}}_{{{\varvec{CP}}}}^{ \bot }}^{T} {\varvec{\psi}}_{{\varvec{k}}} {\varvec{u}}_{k} (t), $$
(70)

which can be rewritten as

$$ {\varvec{y}}_{{\varvec{d}}} (t + n_{1} ) = - \sum\limits_{i = 1}^{{n_{1} }} {\alpha_{i} {\varvec{y}}_{{\varvec{d}}} (t + n_{1} - i} ) + {{\varvec{\Gamma}}_{{{\varvec{CP}}}}^{ \bot }}^{T} {\varvec{\psi}}_{{\varvec{k}}} {\varvec{u}}_{{\varvec{k}}} (t). $$
(71)

Define

$$ {\hat{\varvec{y}}}_{{\varvec{d}}} (t) = - \sum\limits_{i = 1}^{{\hat{n}_{1} }} {\hat{\alpha }_{i} {\varvec{y}}_{{\varvec{d}}} (t - i )} + \mathop{{\hat{\varvec{\Gamma }}}_{{{\varvec{CP}}}}^{ \bot }}\nolimits^{T} {\hat{\varvec{\psi }}}_{{\varvec{k}}} {\varvec{u}}_{{\varvec{k}}} (t - \hat{n}_{1} ), $$
(72)

where \( \hat{\alpha }_{i} , \, i = 1, \ldots ,\hat{n}_{1} \) are the coefficients of the characteristic polynomial of \( {\varvec{\hat{\bar{A}}}} \), and \( \mathop{{\hat{\varvec{\Gamma }}_{{\varvec{CP}}}^{ \bot }}}\nolimits^{T} \) and \( {\hat{\varvec{\psi }}}_{{\varvec{k}}} \) are constructed similar to \( {{\varvec{\Gamma}}_{{{\varvec{CP}}}}^{ \bot }}^{T} \) and \( {\varvec{\psi}}_{{\varvec{k}}} \), respectively, but with the coefficients \( \hat{\alpha }_{i} \) and the estimated matrices \( {\varvec{\hat{\bar{B}}}} \), \( {\varvec{\hat{\bar{C}}}} \) and \( {\hat{\varvec{D}}}^{{\varvec{d}}} \).

Equations (71) and (72) concludes,

$$ {\varvec{e}}_{{\varvec{d}}} (t) = {\varvec{y}}_{{\varvec{d}}} (t) + \sum\limits_{i = 1}^{{\hat{n}_{1} }} {\hat{\alpha }_{i} {\varvec{y}}_{{\varvec{d}}} (t - i} ) - \mathop{{\hat{\varvec{\Gamma }}}_{{{\varvec{CP}}}}^{ \bot }}\nolimits^{T} {\hat{\varvec{\psi }}}_{{\varvec{k}}} {\varvec{u}}_{{\varvec{k}}} (t - \hat{n}_{1} ) = \mathop{{\hat{\varvec{\Gamma }}}_{{{\varvec{CP}}}}^{ \bot }}\nolimits^{T} \left[ {\begin{array}{*{20}c} {\varvec{I}} & { - {\hat{\varvec{\psi }}}_{{\varvec{k}}} } \\ \end{array} } \right] \, \left[ {\begin{array}{*{20}c} {{\varvec{y}}_{{\varvec{k}}}^{{\varvec{d}}} (t - \hat{n}_{1} )} \\ {{\varvec{u}}_{{\varvec{k}}} (t - \hat{n}_{1} )} \\ \end{array} } \right]. $$
(73)

Appendix 3

figure a
figure b
figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadipour, M., Seydnejad, S.R. & Barkhordari-Yazdi, M. Subspace-Based Deterministic Identification of MIMO Linear State-Delayed Systems. Circuits Syst Signal Process 39, 4067–4093 (2020). https://doi.org/10.1007/s00034-020-01355-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01355-4

Keywords

Navigation