Skip to main content
Log in

Bidimensional Empirical Mode Decomposition-Based Diffusion Filtering for Image Denoising

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new method is proposed for image denoising inspired by the bidimensional empirical mode decomposition algorithm and the diffusion-based filtering. In the bidimensional empirical mode decomposition technique, the noisy image is decomposed into its respective intrinsic mode functions and the high-frequency and the low-frequency noises are removed with the help of the proposed diffusion filtering method using its parameters such as connectivity, conductance function, gradient threshold and the number of iterations. The image is reconstructed with the help of these denoised intrinsic mode functions. Performance of the proposed technique is evaluated in terms of the peak signal-to-noise ratio, the structural similarity index, the mean square error and is then compared with the already existing techniques on the image denoising. From the experimentation and results obtained, it is clear that the bidimensional empirical mode decomposition method using the diffusion filtering algorithm is efficient for the denoising of the images both qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M.J. Black, G. Sapiro, D.H. Marimont, D. Heeger, Robust anisotropic diffusion. IEEE Trans. Image Process. 7(3), 421–432 (1998)

    Google Scholar 

  2. S.M. Chao, D.M. Tsai, An improved anisotropic diffusion model for detail-and edge-preserving smoothing. Pattern Recognit. Lett. 31(13), 2012–2023 (2010)

    Google Scholar 

  3. S.M. Chao, D.M. Tsai, Anisotropic diffusion with generalized diffusion coefficient function for defect detection in low-contrast surface images. Pattern Recognit. 43(5), 1917–1931 (2010)

    MATH  Google Scholar 

  4. D. Chen, S. Maclachlan, M. Kilmer, Iterative parameter-choice and multigrid methods for anisotropic diffusion denoising. SIAM J. Sci. Comput. 33(5), 2972–2994 (2011)

    MathSciNet  MATH  Google Scholar 

  5. U. Erkan, L. Gokrem, A new method based on pixel density in salt and pepper noise removal. Turkish J. Electr. Eng. Comput. Sci. 26, 162–171 (2018)

    Google Scholar 

  6. U. Erkan, L. Gokrem, S. Enginoglu, Different applied median filter in salt and pepper noise. Comput. Electr. Eng. 70, 789–798 (2018)

    Google Scholar 

  7. G. Gerig, O. Kubler, R. Kikinis, F.A. Jolesz, Non-linear anisotropic filtering of MRI data. IEEE Trans. Med. Imaging 11(2), 221–232 (1992)

    Google Scholar 

  8. G. Gilboa, N. Sochen, Y.Y. Zeevi, Estimation of optimal PDE-based denoising in the SNR sense. IEEE Trans. Image Process. 15(8), 2269–2280 (2006)

    Google Scholar 

  9. Hlevkin database, https://www.hlevkin.com/06testimages.htm. Accessed December (2018)

  10. N.E. Huang, Z. Shen, S.R. Long et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)

    MathSciNet  MATH  Google Scholar 

  11. P. Mrazek, M. Navara, Selection of optimal stopping time for nonlinear diffusion filtering. Int. J. Comput. Vis. 52, 189–203 (2003)

    Google Scholar 

  12. P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Google Scholar 

  13. R.T. Rato, M.D. Ortigueira, A.G. Batista, On the HHT, its problems, and some solutions. Mech. Syst. Signal Process. 22(6), 1374–1394 (2008)

    Google Scholar 

  14. Rilling, G., Flandrin, P., Gonclaves, P. On empirical mode decomposition and its algorithms, in IEEE-EURASIP Workshop on Nonlinear Signal And Image Processing, NSIP-03, Italy (2003)

  15. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenom. 60(1–4), 259–268 (1992)

    MathSciNet  MATH  Google Scholar 

  16. K.S. Srinivasan, D. Ebenezer, A new fast and efficient decision-based algorithm for removal of high-density impulse noises. IEEE Signal Process. Lett. 14(3), 189–192 (2007)

    Google Scholar 

  17. K.K.V. Toh, N.A.M. Isa, Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Process. Lett. 17(3), 281–284 (2010)

    Google Scholar 

  18. C. Tsiotsios, M. Petrou, On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognit. 46(5), 1369–1381 (2013)

    Google Scholar 

  19. K. Vasanth, V.J.S. Kumar, Decision-based neighbourhood-referred unsymmetrical trimmed variants filter for the removal of high-density salt-and-pepper noise in images and videos. Signal Image Video Process. 9(8), 1833–1841 (2015)

    Google Scholar 

  20. F. Voci, S. Eiho, N. Sugimoto, H. Sekiguchi, Estimating the gradient threshold in the Perona–Malik equation. IEEE Signal Process. Mag. 21(3), 39–65 (2004)

    Google Scholar 

  21. G. Wang, X.Y. Chen, F.L. Qiao et al., On intrinsic mode function. Adv. Adapt. Data Anal. 2(3), 277–293 (2010)

    MathSciNet  Google Scholar 

  22. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Google Scholar 

  23. J. Xu, Y. Jia, Z. Shi, K. Pang, An improved anisotropic diffusion filter with semi-adaptive threshold for edge preservation. Signal Process. 119, 80–91 (2016)

    Google Scholar 

  24. P. Zhang, F. Li, A new adaptive weighted mean filter for removing salt-and-pepper noise. IEEE Signal Process. Lett. 21(10), 1280–1283 (2014)

    Google Scholar 

  25. X. Zhang, X. Feng, W. Wang, S. Zhang, Q. Dong, Gradient-based Wiener filter for image denoising. Comput. Electr. Eng. 39(3), 934–944 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kommuri, S.V.R., Singh, H., Kumar, A. et al. Bidimensional Empirical Mode Decomposition-Based Diffusion Filtering for Image Denoising. Circuits Syst Signal Process 39, 5127–5147 (2020). https://doi.org/10.1007/s00034-020-01404-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01404-y

Keywords

Navigation