Skip to main content
Log in

Matrix Approach for Verification of Opacity of Partially Observed Discrete Event Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Opacity is a confidential property characterizing whether the secret of a system can be inferred or not by an outside observer (also called an intruder). This paper focuses on presenting a matrix-based approach for verification of opacity of nondeterministic discrete event systems (DESs). Firstly, the given system is modeled as a finite-state automaton. Further, based on Boolean semi-tensor product (BSTP) of matrices, the algebraic expression of the observable dynamic of the system can be obtained. We, respectively, investigate current-state opacity and K-step opacity owing to the equivalence between a few opacity properties. Finally, necessary and sufficient conditions are presented to verify whether the secret is opaque for a given system, and the proposed methodology is tested effectively by examples. The matrix-based characterization of opacity proposed in this paper may provide a helpful angel for understanding the structure of this property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, P. Darondeau, Concurrent secrets. Discrete Event Dyn. Syst. 17(4), 425–446 (2007)

    Article  MathSciNet  Google Scholar 

  2. J.W. Bryans, M. Koutny, L. Mazaré, P. Ryan, Opacity generalised to transition systems. Int. J. Inf. Secur. 7(6), 421–435 (2008)

    Article  Google Scholar 

  3. C.G. Cassandras, S. Lafortune, Introduction to Discrete Event Systems (Springer, New York, 2008)

    Book  Google Scholar 

  4. F. Cassez, J. Dubreil, H. Marchand, Synthesis of opaque systems with static and dynamic masks. Form. Methods Syst. Des. 40(1), 88–115 (2012)

    Article  Google Scholar 

  5. Z. Chen, Y. Zhou, Z. Zhang, Z. Liu, Semi-tensor product of matrices approach to the problem of fault detection for discrete event systems (DESs). IEEE Trans. Circuits Syst. II Express Briefs (2020). https://doi.org/10.1109/tcsii.2020.2967062

  6. D. Cheng, On finite potential games. Automatica 50(7), 1793–1801 (2014)

    Article  MathSciNet  Google Scholar 

  7. D. Cheng, H. Qi, Z. Li, Analysis and Control of Boolean Networks: A Semi-tensor Product Approach (Springer, London, 2010)

    Google Scholar 

  8. P. Darondeau, H. Marchand, L. Ricker, Enforcing opacity of regular predicates on modal transition systems. Discrete Event Dyn. Syst. 25(1–2), 251–270 (2015)

    Article  MathSciNet  Google Scholar 

  9. Y. Falcone, H. Marchand, Various notions of opacity verified and enforced at runtime. Technical Report 7349, INRIA (2010)

  10. S. Fu, G. Zhao, H. Li, A. Alsaedi, F. Alsaadi, Model and control for a class of networked evolutionary games with finite memories and time-varying networks. Circuits Syst. Signal Process. 37(7), 3093–3114 (2018)

    Article  MathSciNet  Google Scholar 

  11. M. Gruteser, D. Grunwald, Anonymous usage of location-based services through spatial and temporal cloaking, in Proceedings of the 1st International Conference on Mobile Systems, Applications and Services (2003), pp. 31–42

  12. X. Han, Z. Chen, R. Su, Synthesis of minimally restrictive optimal stability-enforcing supervisors for nondeterministic discrete event systems. Syst. Control Lett. 123, 33–39 (2019)

    Article  MathSciNet  Google Scholar 

  13. X. Han, Z. Chen, J. Zhao, Matrix approach to detectability of discrete event systems under partial observation, in 2017 13th IEEE Conference on Automation Science and Engineering (CASE) (2017), pp. 187–192

  14. C. Huang, J. Lu, G. Zhai, J. Cao, M. Perc, Stability and stabilization in probability of probabilistic Boolean networks. IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/TNNLS.2020.2978345

  15. R. Jacob, J.J. Lesage, J.M. Faure, Overview of discrete event systems opacity: models, validation, and quantification. Annu. Rev. Control 41, 135–146 (2016)

    Article  Google Scholar 

  16. Y. Ji, X. Yin, S. Lafortune, Enforcing opacity by insertion functions under multiple energy constraints. Automatica 108, 108476 (2019)

    Article  MathSciNet  Google Scholar 

  17. Y. Ji, X. Yin, S. Lafortune, Opacity enforcement using nondeterministic publicly-known edit functions. IEEE Trans. Autom. Control 64(10), 4369–4376 (2019)

    Article  MathSciNet  Google Scholar 

  18. C. Keroglou, C.N. Hadjicostis, Probabilistic system opacity in discrete event systems. Discrete Event Dyn. Syst. 28(2), 289–314 (2018)

    Article  MathSciNet  Google Scholar 

  19. R. Liu, J. Lu, W. Zheng, J. Kurths, Output feedback control for set stabilization of Boolean control networks. IEEE Trans. Neural Netw. Learn. Syst. 31(6), 2129–2139 (2020)

    Article  MathSciNet  Google Scholar 

  20. J. Lu, M. Li, T. Huang, Y. Liu, J. Cao, The transformation between the Galois NLFSRs and the Fibonacci NLFSRs via semi-tensor product of matrices. Automatica 96, 393–397 (2018)

    Article  MathSciNet  Google Scholar 

  21. J. Lu, R. Liu, J. Lou, Y. Liu, Pinning stabilization of Boolean control networks via a minimum number of controllers. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2944659

  22. J. Lu, L. Sun, Y. Liu, D.W.C. Ho, J. Cao, Stabilization of Boolean control networks under aperiodic sampled-data control. SIAM J. Control Optim. 56(6), 4385–4404 (2018)

    Article  MathSciNet  Google Scholar 

  23. T. Masopust, X. Yin, Complexity of detectability, opacity and A-diagnosability for modular discrete event systems. Automatica 101, 290–295 (2019)

    Article  MathSciNet  Google Scholar 

  24. L. Mazaré, Using unification for opacity properties, in Proceedings of the 4th IFIP WG1, vol. 7 (2004), pp. 165–176

  25. M. Meng, B. Li, J.E. Feng, Controllability and observability of singular Boolean control networks. Circuits Syst. Signal Process. 34(4), 1233–1248 (2015)

    Article  MathSciNet  Google Scholar 

  26. S.M. Ross, Topics in Finite and Discrete Mathematics (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  27. A. Saboori, C.N. Hadjicostis, Verification of K-step opacity and analysis of its complexity. IEEE Trans. Autom. Sci. Eng. 8(3), 549–559 (2011)

    Article  Google Scholar 

  28. A. Saboori, C.N. Hadjicostis, Verification of infinite-step opacity and complexity considerations. IEEE Trans. Autom. Control 57(5), 1265–1269 (2012)

    Article  MathSciNet  Google Scholar 

  29. A. Saboori, C.N. Hadjicostis, Verification of initial-state opacity in security applications of discrete event systems. Inf. Sci. 246, 115–132 (2013)

    Article  MathSciNet  Google Scholar 

  30. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis, Diagnosability of discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–1575 (1995)

    Article  MathSciNet  Google Scholar 

  31. Y. Tong, Z. Li, C. Seatzu, A. Giua, Current-state opacity enforcement in discrete event systems under incomparable observations. Discrete Event Dyn. Syst. 28(2), 161–182 (2018)

    Article  MathSciNet  Google Scholar 

  32. Y.-C. Wu, S. Lafortune, Comparative analysis of related notions of opacity in centralized and coordinated architectures. Discrete Event Dyn. Syst. 23(3), 307–339 (2013)

    Article  MathSciNet  Google Scholar 

  33. Y.-C. Wu, S. Lafortune, Synthesis of insertion functions for enforcement of opacity security properties. Automatica 50(5), 1336–1348 (2014)

    Article  MathSciNet  Google Scholar 

  34. Y.-C. Wu, S. Lafortune, Synthesis of optimal insertion functions for opacity enforcement. IEEE Trans. Autom. Control 61(3), 571–584 (2016)

    Article  MathSciNet  Google Scholar 

  35. X. Xu, Y. Hong, Matrix expression and reachability analysis of finite automata. J. Control Theory Appl. 10(2), 210–215 (2012)

    Article  MathSciNet  Google Scholar 

  36. X. Xu, Y. Hong, Observability analysis and observer design for finite automata via matrix approach. IET Control Theory Appl. 7(12), 1609–1615 (2013)

    Article  MathSciNet  Google Scholar 

  37. Y. Yan, Z. Chen, Z. Liu, Semi-tensor product approach to controllability and stabilizability of finite automata. J. Syst. Eng. Electron. 26(1), 134–141 (2015)

    Article  Google Scholar 

  38. J. Yang, J. Lu, J. Lou, Y. Liu, Synchronization of drive-response Boolean control networks with impulsive disturbances. Appl. Math. Comput. 364, 124679 (2020)

    Article  MathSciNet  Google Scholar 

  39. X. Yin, S. Lafortune, A uniform approach for synthesizing property-enforcing supervisors for partially-observed discrete-event systems. IEEE Trans. Autom. Control 61(8), 2140–2154 (2016)

    Article  MathSciNet  Google Scholar 

  40. X. Yin, S. Lafortune, A new approach for the verification of infinite-step and K-step opacity using two-way observers. Automatica 80, 162–171 (2017)

    Article  MathSciNet  Google Scholar 

  41. X. Yin, S. Li, Synthesis of dynamic masks for infinite-step opacity. IEEE Trans. Autom. Control 64(4), 1429–1441 (2020)

    Article  MathSciNet  Google Scholar 

  42. X. Yin, Z. Li, W. Wang, Trajectory detectability of discrete-event systems. Syst. Control Lett. 119, 101–107 (2018)

    Article  MathSciNet  Google Scholar 

  43. X. Yin, Z. Li, W. Wang, S. Li, Infinite-step opacity and k-step opacity of stochastic discrete-event systems. Automatica 99, 266–274 (2019)

    Article  MathSciNet  Google Scholar 

  44. B. Zhang, S. Shu, F. Lin, Maximum information release while ensuring opacity in discrete event systems. IEEE Trans. Autom. Sci. Eng. 12(3), 1067–1079 (2015)

    Article  Google Scholar 

  45. K. Zhang, X. Yin, M. Zamani, Opacity of nondeterministic transition systems: A (bi) simulation relation approach. IEEE Trans. Autom. Control 64(12), 5116–5123 (2019)

    Article  MathSciNet  Google Scholar 

  46. J. Zhong, B. Li, Y. Liu, J. Lu, W. Gui, Steady-state design of large-dimensional Boolean networks. IEEE Trans. Neural Netw. Learn. Syst (2020). https://doi.org/10.1109/TNNLS.2020.2980632

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61573102 and 61877033, the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20170019, Natural Science Foundation of Shandong Province under Grant No. ZR2019MF021, “333 Engineering” Foundation of Jiangsu Province of China under Grant BRA2019260, and the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX19_0112.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianquan Lu or Jianlong Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, L., Liu, R., Lu, J. et al. Matrix Approach for Verification of Opacity of Partially Observed Discrete Event Systems. Circuits Syst Signal Process 40, 70–87 (2021). https://doi.org/10.1007/s00034-020-01462-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01462-2

Keywords

Navigation