Skip to main content
Log in

Image Segmentation Using Level Set Driven by Generalized Divergence

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Image segmentation is an important analysis tool in the field of computer vision. In this paper, on the basis of the traditional level set method, a novel segmentation model using generalized divergences is proposed. The main advantage of generalized divergences is their smooth connection performance among various kinds of well-known and frequently used fundamental divergences with one formula. Therefore, the discrepancy between two probability distributions of segmented image parts can be measured by generalized divergences. We also found a solution to determine the optimal divergence automatically for different images. Experimental results on a variety of synthetic and natural images are presented, which demonstrate the potential of the proposed method. Compared with the previous active contour models formulated to solve the same nonparametric statistical segmentation problem, our method performs better both qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Alpert, M. Galun, A. Brandt, R. Basri, Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 315–326 (2012)

    Article  Google Scholar 

  2. S.I. Amari, Alpha-divergence is unique, belonging to both f-divergence and bregman divergence classes. IEEE Trans. Inf. Theory 55(11), 4925–4931 (2009)

    Article  Google Scholar 

  3. X. Bresson, P. Vandergheynst, J.P. Thiran, A variational model for object segmentation using boundary information and shape prior driven by the Mumford–Shah functional. Int. J. Comput. Vis. 68(2), 145–162 (2006)

    Article  Google Scholar 

  4. E.S. Brown, T.F. Chan, X. Bresson, Completely convex formulation of the Chan-Vese image segmentation model. Int. J. Comput. Vis. 98(1), 103–121 (2012)

    Article  MathSciNet  Google Scholar 

  5. V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours. Int. J. Comput Vis. 22(1), 61–79 (1997)

    Article  Google Scholar 

  6. T.F. Chan, W. Zhu, Level set based shape prior segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2005), pp. 1164–1170

  7. T.F. Chan, L.A. Vese, Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  8. Z. Chen, Y. Fu, Y. Xiang, R. Rong, A novel iterative shrinkage algorithm for CS-MRI via adaptive regularization. IEEE Signal Process. Lett. 24(10), 1443–1447 (2017)

    Article  Google Scholar 

  9. Z. Chen, Y. Fu, Y. Xiang, J. Xu, R. Rong, A novel low-rank model for MRI using the redundant wavelet tight frame. Neurocomputing 289, 180–187 (2018)

    Article  Google Scholar 

  10. Z. Chen, C. Huang, S. Lin, A new sparse representation framework for compressed sensing MRI. Knowl. Based Syst. 188, 1–10 (2020)

    Google Scholar 

  11. A. Cichocki, S. Amari, Families of alpha- beta- and gamma- divergences: flexible and robust measures of similarities. Entropy 12, 1532–1568 (2010)

    Article  MathSciNet  Google Scholar 

  12. J. Dai, K. He, J. Sun, Instance-aware semantic segmentation via multi-task network cascades, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 3150–3158

  13. A. Foulonneau, P. Charbonnier, F. Heitz, Affine-invariant geometric shape priors for region-based active contours. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1352–1357 (2006)

    Article  Google Scholar 

  14. R. Girshick, Fast R-CNN, in Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 1440–1448

  15. R. Girshick, J. Donahue, T. Darrell, J. Malik, Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2016)

    Article  Google Scholar 

  16. M. Gong, H. Li, X. Zhang, Q. Zhao, B. Wang, Nonparametric statistical active contour based on inclusion degree of fuzzy sets. IEEE Trans. Fuzzy Syst. 24(5), 1176–1192 (2016)

    Article  Google Scholar 

  17. K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 2961–2969

  18. P. Hu, B. Shuai, J. Liu, G. Wang, Deep level sets for salient object detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 540–549

  19. J. Kim, J.W. Fisher, A. Yezzi, M. Çetin, A.S. Willsky, A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans. Image Process. 14(10), 1486–1502 (2005)

    Article  MathSciNet  Google Scholar 

  20. S. Lankton, A. Tannenbaum, Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  21. T.H.N. Le, K.G. Quach, K. Luu, C.N. Duong, M. Savvides, Reformulating level sets as deep recurrent neural network approach to semantic segmentation. IEEE Trans. Image Process. 27(5), 2393–2407 (2018)

    Article  MathSciNet  Google Scholar 

  22. C. Li, R. Huang, Z. Ding, J.C. Gatenby, D.N. Metaxas, J.C. Gore, A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011)

    Article  MathSciNet  Google Scholar 

  23. C. Li, C.Y. Kao, J.C. Gore, Z. Ding, Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  24. C. Li, C. Xu, C. Gui, M.D. Fox, Level set evolution without re-initialization: a new variational formulation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2005), pp. 430–436

  25. F. Liese, I. Vajda, On divergences and informations in statistics and information theory. IEEE Trans. Inf. Theory 52(10), 4394–4412 (2006)

    Article  MathSciNet  Google Scholar 

  26. J. Liu, C. Smith, H. Chebrolu, A local probabilistic prior-based active contour model for brain MR image segmentation, in Asian Conference on Computer Vision (Springer, New York, 2007), pp. 956–964

  27. J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 3431–3440

  28. O. Michailovich, Y. Rathi, A. Tannenbaum, Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans. Image Process. 16(11), 2787–2801 (2007)

    Article  MathSciNet  Google Scholar 

  29. H. Min, W. Jia, Y. Zhao, W. Zuo, H. Ling, Y. Luo, Late: a level-set method based on local approximation of Taylor expansion for segmenting intensity inhomogeneous images. IEEE Trans. Image Process. 27(10), 5016–5031 (2018)

    Article  MathSciNet  Google Scholar 

  30. A. Mitiche, I.B. Ayed, Variational and Level Set Methods in Image Segmentation (Springer, Berlin, 2010)

    MATH  Google Scholar 

  31. M.N.H. Mollah, N. Sultana, M. Minami, S. Eguchi, Robust extraction of local structures by the minimum beta-divergence method. Neural Netw. 23(2), 226–238 (2010)

    Article  Google Scholar 

  32. E. Parzen, On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  Google Scholar 

  33. S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  34. L. Wang, J. Zhu, M. Sheng, A. Cribb, S. Zhu, J. Pu, Simultaneous segmentation and bias field estimation using local fitted images. Pattern Recognit. 74, 145–155 (2018)

    Article  Google Scholar 

  35. H. Wu, V. Appia, A. Yezzi, Numerical conditioning problems and solutions for nonparametric i.i.d. statistical active contours. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1298–1311 (2013)

    Article  Google Scholar 

  36. T. Yamano, A generalization of the Kullback–Leibler divergence and its properties. J. Math. Phys. 50(4), 79–561 (2009)

    Article  MathSciNet  Google Scholar 

  37. Z. Zhou, M. Dai, T. Wang, R. Zhao, Prior distribution-based statistical active contour model. Multimed. Tools Appl. 78(24), 35813–35833 (2019)

    Article  Google Scholar 

  38. Z. Zhou, M. Dai, H. Zhong, Parametric shape prior model used in image segmentation. J. Syst. Eng. Electron. 27(5), 1115–1121 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by National Key R&D Program of China (2018YFC0309400), National Natural Science Foundation of China (61871188), Guangzhou city science and technology research projects (201902020008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiheng Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, M., Zhou, Z., Wang, T. et al. Image Segmentation Using Level Set Driven by Generalized Divergence. Circuits Syst Signal Process 40, 719–737 (2021). https://doi.org/10.1007/s00034-020-01491-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01491-x

Keywords

Navigation