Skip to main content
Log in

Efficient Clustering of Non-coherent and Coherent Components Regardless of Sources’ Powers for 2D DOA Estimation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Conventional decorrelation techniques that resolve all signals simultaneously are not efficient in mixture scenarios of non-coherent and coherent signals. In newer methods for one-dimensional arrays, non-coherent signals and coherent groups are resolved separately. However, employing an unreliable and non-adaptive threshold is the most significant disadvantage of these methods. On the other hand, they cannot be implemented for two-dimensional arrays. To deal with these issues, the signals separation using k-medoids clustering (SSKMC) algorithm was presented. Although the SSKMC algorithm does not have any of the shortcomings mentioned above, it relies on a basic limiting assumption that the sources should be equi-power. Therefore, the practical application of the SSKMC algorithm is facing a serious problem. In this paper, the SSKMC algorithm is extended so that it can be used even if the sources’ powers are not the same. First, the two-dimensional array is divided into several parallel linear sub-arrays. Then, by defining a components separation matrix, and employing its eigenvalues, the non-coherent and coherent components are identified. The effectiveness of the proposed solution is proven by mathematical facts. Simulation results verify the proofs and the benefit of the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Akaike, A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  Google Scholar 

  2. E. Fishler, M. Grosmann, H. Messer, Detection of signals by information theoretic criteria: general asymptotic performance analysis. IEEE Trans. Signal Process. 50(5), 1027–1036 (2002)

    Article  MathSciNet  Google Scholar 

  3. O.L. Frost, An algorithm for linearly constrained adaptive array processing. Proc. IEEE 60(8), 926–935 (1972)

    Article  Google Scholar 

  4. X. Fu, R. Cao, F. Wen, A de-noising 2-D-DOA estimation method for uniform rectangle array. IEEE Commun. Lett. 22(9), 1854–1857 (2018)

    Article  Google Scholar 

  5. L. Gan, X. Luo, Direction-of-arrival estimation for uncorrelated and coherent signals in the presence of multipath propagation. IET Microwaves Antennas Propag. 7(9), 746–753 (2013)

    Article  Google Scholar 

  6. E. Gonen, J.M. Mendel, M.C. Dogan, Applications of cumulants to array processing. IV. Direction finding in coherent signals case. IEEE Trans. Signal Process. 45(9), 2265–2276 (1997)

    Article  Google Scholar 

  7. X. Jin, J. Han, K-medoids clustering, in Encyclopedia of Machine Learning and Data Mining (2017), pp. 697–700

  8. F. Liu, J. Wang, C. Sun, R. Du, Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals. IEEE Trans. Antennas Propag. 60(4), 2052–2062 (2012)

    Article  MathSciNet  Google Scholar 

  9. T. Lu, M. Zhang, T. Kang, A. Zhang, Joint TOA/DOA estimation using the SAGE algorithm in OFDM systems with virtual carriers, in Journal of Physics: Conference Series, vol. 1 (IOP Publishing, 2019), p. 012057

  10. A.M. Molaei, A. Ramezani-Varkani, M.R. Soheilifar, A pure cumulant-based method with low computational complexity for classification and localization of multiple near and far field sources using a symmetric array. Prog. Electromagn. Res. 96, 123–138 (2019)

    Article  Google Scholar 

  11. A.M. Molaei, B. Zakeri, S.M.H. Andargoli, Passive localization and classification of mixed near-field and far-field sources based on high-order differencing algorithm. Signal Process. 157, 119–130 (2019)

    Article  Google Scholar 

  12. A.M. Molaei, B. Zakeri, S.M.H. Andargoli, Closed-form expression of stochastic CRB for mixed near-field and far-field sources in multipath propagation environments. IEEE Commun. Lett. 23(4), 640–643 (2019)

    Article  Google Scholar 

  13. A.M. Molaei, B. Zakeri, S.M.H. Andargoli, Components separation algorithm for localization and classification of mixed near-field and far-field sources in multipath propagation. IEEE Trans. Signal Process. 68, 404–419 (2020)

    Article  MathSciNet  Google Scholar 

  14. A.M. Molaei, B. Zakeri, S.M.H. Andargoli, Two-dimensional DOA estimation for multi-path environments by accurate separation of signals using k-medoids clustering. IET Commun. 13(9), 1141–1147 (2019)

    Article  Google Scholar 

  15. A.M. Molaei, M. Hoseinzade, High-performance 2D DOA estimation and 3D localization for mixed near/far-field sources using fourth-order spatiotemporal algorithm. Digit. Signal Proc. 100, 102696 (2020)

    Article  Google Scholar 

  16. A.M. Molaei, M. Hoseinzade, Derivation of multidimensional stochastic Cramer-Rao bound for mixture of noncoherent and coherent near/far field signals. Trans. Emerg. Telecommun. Technol. 31(6), e3971 (2020)

    Google Scholar 

  17. A.M. Molaei, B. Zakeri, S.M.H. Andargoli, High-performance localization of mixed fourth-order stationary sources based on a spatial/temporal full ESPRIT-like method. Signal Process. 171, 107468 (2020)

    Article  Google Scholar 

  18. P. Palanisamy, N. Kalyanasundaram, P. Swetha, Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array. Signal Process. 92(1), 19–28 (2012)

    Article  Google Scholar 

  19. S.U. Pillai, B.H. Kwon, Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Signal Process. 37(1), 8–15 (1989)

    Article  Google Scholar 

  20. S. Ren, X. Ma, S. Yan, C. Hao, 2-D unitary ESPRIT-like direction-of-arrival (DOA) estimation for coherent signals with a uniform rectangular array. Sensors 13(4), 4272–4288 (2013)

    Article  Google Scholar 

  21. T.-J. Shan, M. Wax, T. Kailath, On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. Acoust. Speech Signal Process. 33(4), 806–811 (1985)

    Article  Google Scholar 

  22. H. Shi, W. Leng, A. Wang, T. Guo, DOA estimation for mixed uncorrelated and coherent sources in multipath environment. Int. J. Antennas Propag. 2015, 636545 (2015). https://doi.org/10.1155/2015/636545

    Article  Google Scholar 

  23. G. Sreekumar, L. Mary, A. Unnikrishnan, Beam-forming of broadband QFM signals using generalized time–frequency transform. Int. J. Electron. 107, 542–560 (2019)

    Article  Google Scholar 

  24. H. Tao, J. Xin, J. Wang, N. Zheng, A. Sano, Two-dimensional direction estimation for a mixture of noncoherent and coherent signals. IEEE Trans. Signal Process. 63(2), 318–333 (2014)

    Article  MathSciNet  Google Scholar 

  25. N. Tayem, Estimation 2D DOA of coherent signals using a new antenna array configuration, in MILCOM 2012-2012 IEEE Military Communications Conference (IEEE, 2012), pp. 1–5

  26. Y. Wang, M. Trinkle, Coherent signals DOA estimation in the presence of complex noise, in International Global Navigation Satellite Systems Society (IGNSS) Symposium 2013, Outrigger Gold Coast, Australia, 16–18 July (2013)

  27. X. Wenmeng, P. José, M. Sylvie, Performance analysis of distributed source parameter estimator (DSPE) in the presence of modeling errors due to the spatial distributions of sources. Signal Process. 143, 146–151 (2018)

    Article  Google Scholar 

  28. X. Xu, Z. Ye, Y. Zhang, DOA estimation for mixed signals in the presence of mutual coupling. IEEE Trans. Signal Process. 57(9), 3523–3532 (2009)

    Article  MathSciNet  Google Scholar 

  29. Z.-F. Ye, Y.-F. Zhang, C. Liu, Direction-of-arrival estimation for uncorrelated and coherent signals with fewer sensors. IET Microwaves Antennas Propag. 3(3), 473–482 (2009)

    Article  Google Scholar 

  30. N. Yuen, B. Friedlander, DOA estimation in multipath: an approach using fourth-order cumulants. IEEE Trans. Signal Process. 45(5), 1253–1263 (1997)

    Article  Google Scholar 

  31. Z. Zheng, W.-Q. Wang, H. Meng, H.C. So, H. Zhang, Efficient beamspace-based algorithm for two-dimensional DOA estimation of incoherently distributed sources in massive MIMO systems. IEEE Trans. Veh. Technol. 67(12), 11776–11789 (2018)

    Article  Google Scholar 

  32. Z. Zheng, Y. Yang, W.-Q. Wang, S. Zhang, Two-dimensional direction estimation of multiple signals using two parallel sparse linear arrays. Signal Process. 143, 112–121 (2018)

    Article  Google Scholar 

  33. Z. Zheng, S. Mu, Two-dimensional DOA estimation using two parallel nested arrays. IEEE Commun. Lett. 24(3), 568–571 (2020). https://doi.org/10.1109/LCOMM.2019.2958903

    Article  Google Scholar 

  34. Z. Zheng, Y. Huang, W.-Q. Wang, H.C. So, Direction-of-arrival estimation of coherent signals via coprime array interpolation. IEEE Signal Process. Lett. 27, 585–589 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Masoud Molaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Inequality \( \left| {\iota_{{K_{n} + g}} } \right| < 1 \)

Appendix: Proof of Inequality \( \left| {\iota_{{K_{n} + g}} } \right| < 1 \)

Given Eq. (24), the triangular inequality and the fact that \( \left| {e^{{j\frac{2\pi }{\lambda }d_{y} \cos \theta_{{\left( {K_{n} + g} \right)i}} \sin \varphi_{{\left( {K_{n} + g} \right)i}} }} } \right| = 1 \), we have

$$ \left| {\iota_{{K_{n} + g}} } \right| = \left| {\beta_{g1} e^{{j\frac{2\pi }{\lambda }d_{y} \cos \theta_{{\left( {K_{n} + g} \right)1}} \sin \varphi_{{\left( {K_{n} + g} \right)1}} }} \alpha_{g1} + \cdots} \right.\left. { + \beta_{{gp_{g} }} e^{{j\frac{2\pi }{\lambda }d_{y} \cos \theta_{{\left( {K_{n} + g} \right)p_{g} }} \sin \varphi_{{\left( {K_{n} + g} \right)p_{g} }} }} \alpha_{{gp_{g} }} } \right| < \left| {\beta_{g1} \alpha_{g1} } \right| + \cdots + \left| {\beta_{{gp_{g} }} \alpha_{{gp_{g} }} } \right|. $$
(26)

Note that since, according to [A4], for \( i,\,i^{\prime} = 1,\,\ldots,\,p_{g} \) and \( i \ne i^{\prime} \), we have \( \cos \theta_{{\left( {K_{n} + g} \right)i}} \sin \varphi_{{\left( {K_{n} + g} \right)i}} \ne \cos \theta_{{\left( {K_{n} + g} \right)i^{\prime} }} \sin \varphi_{{\left( {K_{n} + g} \right)i^{\prime} }} \), so the equality does not hold in triangular inequality. On the other hand, since \( {\varvec{\upbeta}}_{g} = {\varvec{\upalpha}}_{g}^{\dag } \), \( \beta_{gp} \) s can be calculated in terms of the FCs as follows:

$$ \left[ {\beta_{g1} ,\,\ldots,\,\beta_{{gp_{g} }} } \right] = \left( {\left[ {\alpha_{g1}^{*} ,\,\ldots,\,\alpha_{{gp_{g} }}^{*} } \right]\left[ {\alpha_{g1} ,\,\ldots,\,\alpha_{{gp_{g} }} } \right]^{T} } \right)^{ - 1} \left[ {\alpha_{g1}^{*} ,\,\ldots,\,\alpha_{{gp_{g} }}^{*} } \right] = \frac{{\left[ {\alpha_{g1}^{*} ,\,\ldots,\,\alpha_{{gp_{g} }}^{*} } \right]}}{{\left| {\alpha_{g1} } \right|^{2} + \cdots + \left| {\alpha_{{gp_{g} }} } \right|^{2} }}. $$
(27)

So, \( \beta_{gp} \) can be written as

$$ \beta_{gp} = \frac{{\alpha_{gp}^{*} }}{{\left| {\alpha_{g1} } \right|^{2} + \cdots + \left| {\alpha_{{gp_{g} }} } \right|^{2} }}. $$
(28)

Consequently, according to Eqs. (25) and (27), we can write

$$ \left| {\iota_{{K_{n} + g}} } \right| < \frac{{\left| {\alpha_{g1} } \right|^{2} }}{{\left| {\alpha_{g1} } \right|^{2} + \cdots + \left| {\alpha_{{gp_{g} }} } \right|^{2} }} + \cdots + \frac{{\left| {\alpha_{{gp_{g} }} } \right|^{2} }}{{\left| {\alpha_{g1} } \right|^{2} + \cdots + \left| {\alpha_{{gp_{g} }} } \right|^{2} }} = 1. $$
(29)

So, the inequality is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molaei, A.M., Zakeri, B. & Hosseini Andargoli, S.M. Efficient Clustering of Non-coherent and Coherent Components Regardless of Sources’ Powers for 2D DOA Estimation. Circuits Syst Signal Process 40, 756–771 (2021). https://doi.org/10.1007/s00034-020-01494-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01494-8

Keywords

Navigation