Skip to main content
Log in

A Single-Channel Amplifier for Simultaneously Monitoring Impedance Respiration Signal and ECG Signal

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Physiological signals can reflect the physiological characteristics of the human body and serve as important reference for doctors in clinical diagnosis. Hence, wearable intelligent equipment for physiological signal monitoring has attracted increasing attention. Such equipment must be of a small size and must have low power consumption. To meet these demands, we designed a single-channel amplifier, that can simultaneously acquire the electrocardiograph (ECG) signal and impedance respiration signal. We used oversampling and fast digital lock-in technology to improve the measuring precision of the circuit without increasing the complexity of the circuit. The circuit makes use of the capacitive reactance of a capacitor, which changes with the frequency of the signal; this can meet the different impedance requirements of both the impedance respiratory signal and ECG signal during the measurements. The result of experiments shows that the circuit can obtain high-quality ECG and respiratory waveforms. This circuit can serve as a valuable reference for the design of wearable health monitoring equipment to simultaneously acquire multiple human physiological signals in a signal channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. P. Arroyo, F. Meléndez, I. Suárez, J.L.H. Agustín, S. Rodriguez, J. Lozano, Electronic nose with digital gas sensors connected via Bluetooth to a smartphone for air quality measurements. Sensors 20(3), 786 (2020)

    Article  Google Scholar 

  2. M. Berens, K. Mai, J. Feddeler, S. Pietri, A general purpose 1.8-V 12-b 4-MS/s fully differential SAR ADC with 7.2-Vpp input range in 28-nm FDSOI. IEEE Trans. Circuits Syst. II-Express Briefs 66(11), 1785–1789 (2019)

    Article  Google Scholar 

  3. N. Chawla, K. Bowyer, L. Hall, W. Kegelmeyer, SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002)

    Article  Google Scholar 

  4. Y. Donner, K. Fortney, S.R.G. Calimport, K. Pfleger, M. Shah, J. Betts-LaCroix, Great desire for extended life and health amongst the American public. Front. Genet. 6, 353 (2016)

    Article  Google Scholar 

  5. P. Defaye, J. Pépin, Y. Poezevara, P. Mabo, F. Murgatroyd, P. Lévy, S. Garrigue, Automatic recognition of abnormal respiratory events during sleep by a pacemaker transthoracic impedance sensor. J. Cardiovasc. Electrophysiol. 15(9), 1034–1040 (2004)

    Article  Google Scholar 

  6. D.L. Danyuk, G.V. Pilko, Feedforward amplifiers incorporate parallel output summing. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41(12), 912–915 (1994)

    Article  Google Scholar 

  7. S.K. Ghosh, D. Mandal, Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring. Appl. Phys. Lett. 110(12), 123701 (2017)

    Article  Google Scholar 

  8. S. Ha, C. Kim, Y.M. Chi, A. Akinin, C. Maier, A. Ueno, G. Cauwenberghs, Integrated circuits and electrode interfaces for noninvasive physiological monitoring. IEEE Trans. Biomed. Eng. 61(5), 1522–1537 (2014)

    Article  Google Scholar 

  9. J.H. Houtveen, P.F.C. Groot, E.J.C. de Geus, Validation of the thoracic impedance derived respiratory signal using multilevel analysis. Int. J. Psychophysiol. 59(2), 97–106 (2006)

    Article  Google Scholar 

  10. C.H. Ke, S.Y. Hsieh, T.C. Lin, T.H. Ho, Efficiency network construction of advanced metering infrastructure using Zigbee. IEEE. Trans. Mob. Comput. 18(4), 801–803 (2019)

    Article  Google Scholar 

  11. T.M. Khaneshan, S. Naghavi, M. Nematzade, K. Hadidi, A. Abrishamifar, A. Khoei, A fast and low settling error continuous-time common-mode feedback circuit based on differential difference amplifier. J. Circuits Syst. Comput. 23(5), 1450065 (2014)

    Article  Google Scholar 

  12. S. Lee, P. Huang, M. Liang, J. Hong, J. Chen, Development of an arrhythmia monitoring system and human study. IEEE Trans. Consum. Electron. 64(4), 442–451 (2018)

    Article  Google Scholar 

  13. H. Li, X. Chen, L. Cao, C. Zhang, C. Tang, E. Li, X. Feng, H. Liang, Textile-based ECG acquisition system with capacitively coupled electrodes. Trans. Inst. Meas. Control 39(2), 141–148 (2017)

    Article  Google Scholar 

  14. G. Li, J. Liu, X. Li, L. Lin, R. Wei, A multiple biomedical signals synchronous acquisition circuit based on over-sampling and shaped signal for the application of the ubiquitous health care. Circuits Syst. Signal Process. 33(10), 3003–3017 (2014)

    Article  Google Scholar 

  15. G. Li, M. Zhou, F. He, L. Lin, A novel algorithm combining oversampling and digital lock-in amplifier of high speed and precision. Rev. Sci. Instrum. 82(9), 95106 (2011)

    Article  Google Scholar 

  16. Y. Liu, X. Qiao, G. Li, L. Lin, An improved device for bioimpedance deviation measurements based on 4-electrode half bridge. Rev. Sci. Instrum. 87(10), 105107 (2016)

    Article  Google Scholar 

  17. L. Lin, S. Li, W. Yan, G. Li, Employment of sawtooth-shaped-function excitation signal and oversampling for improving resistance measurement accuracy. Rev. Sci. Instrum. 87(10), 105104 (2016)

    Article  MathSciNet  Google Scholar 

  18. F. Liu, J. Yin, P. Chen, A survey on WiFi-based indoor positioning technologies. IET Commun. 14(9), 1372–1383 (2020)

    Article  Google Scholar 

  19. C.R. Merritt, H.T. Nagle, E. Grant, Textile-based capacitive sensors for respiration monitoring. IEEE Sens. J. 9(1), 71–78 (2009)

    Article  Google Scholar 

  20. Y. Matsuya, K. Uchimura, A. Iwata, T. Kobayashi, M. Ishikawa, T. Yoshitome, A 16-bit oversampling A-to-D conversion technology using triple-integration noise shaping. IEEE J. Solid-State Circuit 22(6), 921–929 (1988)

    Article  Google Scholar 

  21. K. Nguyen, R. Adams, K. Sweetland, H. Chen, A 106-dB SNR hybrid oversampling analog-to-digital converter for digital audio. IEEE J. Solid-State Circuit 40(12), 2408–2415 (2005)

    Article  Google Scholar 

  22. M. Rapin, F. Braun, A. Adler, J. Wacker, I. Frerichs, B. Vogt, O. Chételat, Wearable sensors for frequency-multiplexed EIT and multilead ECG data acquisition. IEEE Trans. Biomed. Eng. 66(3), 801–820 (2019)

    Article  Google Scholar 

  23. C. Redmond, Transthoracic Impedance Measurements in Patient Monitoring. https://www.analog.com/en/technical-articles/transthoracic-impedance-measurements-in-patient-monitoring.html. Accessed 2013

  24. H. Sharma, ECG-derived respiration using Hermite expansion. Biomed. Signal Process. Control 39, 312–326 (2017)

    Article  Google Scholar 

  25. S. Song, F. Jiang, L. Hao, L. Xu, X. Yi, G. Li, L. Lin, Use of bi-level pulsed frequency-division excitation for improving blood oxygen saturation precision. Measurement 129, 523–529 (2018)

    Article  Google Scholar 

  26. A. Sarmento, C. Vignati, S. Paolillo, C. Lombardi, A. Scoccia, F. Nicoli, M. Mapelli, A. Leonardi, D. Ossola, R. Rigoni, P. Agostoni, A. Aliverti, Qualitative and quantitative evaluation of a new wearable device for ECG and respiratory Holter monitoring. Int. J. Cardiol. 272, 231–237 (2018)

    Article  Google Scholar 

  27. S.K. Thangaraju, K. Munisamy, III Lead ECG Pulse Measurement Sensor, in IOP Conference Series: Materials Science and Engineering, vol. 88 (2015), p. 12047

  28. X. Yi, L. Hao, F. Jiang, L. Xu, S. Song, X. Liu, L. Lin, Synchronous acquisition of multi-channel signals by single-channel ADC based on square wave modulation. Rev. Sci. Instrum. 88(8), 85108 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Key Laboratory of Biomedical Detecting Techniques of Tianjin University for the equipment and support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Li, G., Luo, Y. et al. A Single-Channel Amplifier for Simultaneously Monitoring Impedance Respiration Signal and ECG Signal. Circuits Syst Signal Process 40, 559–571 (2021). https://doi.org/10.1007/s00034-020-01513-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01513-8

Keywords

Navigation