Abstract
A bulk-driven low-impedance compensation technique is proposed for ultra-low supply voltage amplifiers. By using the low resistance node of the current mirror of input, the efficiency of Miller compensation capacitor is greatly improved. By using this compensation method, a rail-to-rail input & output bulk-driven fully differential operational amplifier is also presented in the paper. The effectiveness of the circuit has been verified in a 65 nm CMOS process, the proposed three-stage amplifier has over 70.69 dB gain, 19.95 kHz gain-bandwidth product, and 69.7° phase margin while consuming only 8.72 nW power, and occupying die area of 0.00082 mm2 from a 0.3 V supply while driving a 100pF load.












Similar content being viewed by others
References
W. Bai, Z. Zhu, A 0.5-V 9.3-ENOB 68-nW 10-kS/s SAR ADC in 0.18-μm CMOS for biomedical applications. Microelectron. J. 59, 40–46 (2017). https://doi.org/10.1016/j.mejo.2016.11.007
X. Tong, M. Song, Y. Chen, S. Dong, A 10-Bit 120 kS/s SAR ADC without reset energy for biomedical electronics. Circuits, Systems, and Signal Processing 38(12), 5411–5425 (2019). https://doi.org/10.1007/s00034-019-01138-6
X. Tong, M. Ghovanloo, Multichannel wireless neural recording AFE architectures: Analysis, modeling, and tradeoffs. IEEE Design & Test 33(4), 24–36 (2016). https://doi.org/10.1109/MDAT.2015.2504367
D. Li, M. Liu, L. Zhao, H. Mao, R. Ding, Z. Zhu, An 8-bit 2.1-mW 350-MS/s SAR ADC with 1.5 b/cycle redundancy in 65-nm CMOS express briefs. IEEE Trans. Circuits Syst. II (2020). https://doi.org/10.1109/TCSII.2020.2968457
C. Cao, Q. Ye, Z. Zhu, Y. Yang, A background digital calibration of split-capacitor 16-bit SAR ADC with sub-binary architecture. Microelectron. J. 46(9), 795–800 (2015). https://doi.org/10.1016/j.mejo.2015.06.013
W. Jiang, Y. Zhu, M. Zhang, C. Chan, R.P. Martins, A temperature-stabilized single-channel 1-GS/s 60-dB SNDR SAR-assisted pipelined ADC with dynamic Gm-r-based amplifier. IEEE J. Solid-State Circuits 55(2), 322–332 (2020). https://doi.org/10.1109/JSSC.2019.2948170
J. Riad, J.J. Estrada-López, I. Padilla-Cantoya, E. Sánchez-Sinencio, Power-scaling output-compensated three-stage OTAs for wide load range applications. IEEE Trans. Circuits Syst. I Regul. Pap. 67(7), 2180–2192 (2020). https://doi.org/10.1109/TCSI.2020.2978515
T. Kulej, F. Khateb, Design and implementation of sub 0.5-V OTAs in 0.18-μm CMOS. Int. J. Circuit Theory Appl. 46(6), 1129–1143 (2018). https://doi.org/10.1002/cta.2465
Saxena, V., Baker, R.J. Indirect compensation techniques for three-stage CMOS op-amps. In: IEEE International Midwest Symposium on Circuits and Systems, (2009), pp.9–12
Li, Z., Zhu, Z., Xie, Y., Liu, M. A 116 dB Gain, 556.1 MHz GBW Four-Stage OTA in 65 nm CMOS. In: IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), (2018), pp.1–3
S. Dong, Z. Zhu, A transconductance-enhancement cascode Miller compensation for low-power multistage amplifiers. Microelectron. J. 73, 94–100 (2018). https://doi.org/10.1016/j.mejo.2018.01.009
E. Ranjbar, M. Danaie, Frequency compensation of three-stage operational amplifiers: Sensitivity and robustness analysis. Microelectron. J. 66, 155–166 (2017). https://doi.org/10.1016/j.mejo.2017.06.010
Yavari, M., Shoaei, O., Svelto, F. Hybrid cascode compensation for two-stage CMOS operational amplifiers. In: IEEE International Symposium on Circuits and Systems, (2005), pp. 1565–1568
E. Zia, A. Jalali, M. Akbari, Indirect frequency compensation technique using flipped voltage follower cell. Int. J. Electron. Lett. 5(2), 189–198 (2017). https://doi.org/10.1080/21681724.2016.1138510
S. Liu, Z. Zhu, J. Wang, L. Liu, Y. Yang, A 1.2-V 2.41-GHz three-stage CMOS OTA with efficient frequency compensation technique. IEEE Trans. Circuits Syst. I: Reg. Pap. 66(1), 20–30 (2019)
J.H. Huijsing, D. Linebarger, Low-voltage operational amplifier with rail-to-rail input and output ranges. IEEE J. Solid-State Circuits 20(6), 1144–1150 (1985). https://doi.org/10.1109/JSSC.1985.1052452
R.G.H. Eschauzier, L.P.T. Kerklaan, J.H. Huijsing, A 100-MHz 100-dB operational amplifier with multipath nested Miller compensation structure. IEEE J. Solid-State Circuits 27(12), 1709–1717 (1992). https://doi.org/10.1109/4.173096
Xiaohong, P., Sansen, W. Nested feed-forward Gm-stage and nulling resistor plus nested-Miller compensation for multistage amplifiers. In: IEEE Custom Integrated Circuits Conference (CICC), (2002), pp.329–332
F. Xiaohua, C. Mishra, E. Sanchez-Sinencio, Single Miller capacitor frequency compensation technique for low-power multistage amplifiers. IEEE J. Solid-State Circuits 40(3), 584–592 (2005). https://doi.org/10.1109/JSSC.2005.843602
S. Biabanifard, S. Mehdi Largani, M. Akbari, S. Asadi, M.C.E. Yagoub, High performance reversed nested Miller frequency compensation. Analog Integr. Circuits Sig. Process. 85(1), 223–233 (2015). https://doi.org/10.1007/s10470-015-0616-x
Liu, L., Zhuang, Y., Zhang, L., Jing, K., Dong, S., Chen, Y. A Reconfigurable Low Noise Amplifier with Sub-amplifier Compensation for Wearable Wireless Neural Recording System. In : IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), (2019), pp.1–3
M. Akbari, O. Hashemipour, A 63-dB gain OTA operating in subthreshold with 20-nW power consumption. Int. J. Circuit Theory Appl. 45(6), 843–850 (2017). https://doi.org/10.1002/cta.2248
Y. Wang, X. Zhao, Q. Zhang, X. Lv, Adjustably transconductance enhanced bulk-driven OTA with the CMOS technologies scaling. Electron. Lett. 54(5), 276–278 (2018). https://doi.org/10.1049/el.2017.4435
H. Veldandi, R.A. Shaik, 2018 A 0.3-V pseudo-differential bulk-Input OTA for low-frequency applications. Circuits Syst. Sig. Process. 37(12), 5199–5221 (2018). https://doi.org/10.1007/s00034-018-0817-5
Z. Qin, A. Tanaka, N. Takaya, H. Yoshizawa, 0.5-V 70-nW rail-to-rail operational amplifier using a cross-coupled output stage. IEEE Trans. Circuits Syst II: Exp Briefs 63(11), 1009–1013 (2016). https://doi.org/10.1109/TCSII.2016.2539081
K. Woo, B. Yang, A 0.25-V rail-to-rail three-stage OTA with an enhanced DC gain. IEEE Trans. Circuits Syst. II: Exp. Briefs 67(7), 1179–1183 (2020). https://doi.org/10.1109/TCSII.2019.2935172
T. Kulej, 0.5-V bulk-driven CMOS operational amplifier. IET Circuits Dev. Syst. 7, 352–360 (2013). https://doi.org/10.1049/iet-cds.2012.0372
T. Kulej, F. Khateb, A 0.3-V 98-dB rail-to-rail OTA in $0.18~\mu$ m CMOS. IEEE Access 8, 27459–27467 (2020). https://doi.org/10.1109/ACCESS.2020.2972067
T. Kulej, F. Khateb, A compact 0.3-V class AB bulk-driven OTA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(1), 224–232 (2020). https://doi.org/10.1109/TVLSI.2019.2937206
P. Monsurró, S. Pennisi, G. Scotti, A. Trifiletti, Exploiting the body of MOS devices for high performance analog design. IEEE Circuits Syst. Mag. 11(4), 8–23 (2011). https://doi.org/10.1109/MCAS.2011.942751
S. Guo, H. Lee, Dual active-capacitive-feedback compensation for low-power large-capacitive-load three-stage amplifiers. IEEE J. Solid-State Circuits 46(2), 452–464 (2011). https://doi.org/10.1109/JSSC.2010.2092994
M. Akbari, O. Hashemipour, F. Moradi, Input offset estimation of CMOS integrated circuits in weak inversion. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(9), 1812–1816 (2018). https://doi.org/10.1109/TVLSI.2018.2830749
Acknowledgments
This work was supported by the National Natural Science Foundation of China (61804124, 61674122), The Natural Science Project of Shaanxi Province Education Department (18JK0703).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Data Availability Statement
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dong, S., Wang, Y., Tong, X. et al. A 0.3-V 8.72-nW OTA with Bulk-Driven Low-Impedance Compensation for Ultra-Low Power Applications. Circuits Syst Signal Process 40, 2209–2227 (2021). https://doi.org/10.1007/s00034-020-01590-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-020-01590-9