Skip to main content
Log in

A New Low-Power Charge Pump with a Glitch-Free PFD for Speedup the Acquisition Process of a PLL in 65 nm CMOS Technology

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new low-power charge pump (CP) is presented, which includes a switched-capacitor CP (SC-CP) as the main CP and an auxiliary current-steering CP (ACS-CP) to accelerate the lock process. By using a pulse width controller unit, the ACS-CP activates in predefined phase differences and turns off near the lock region. By utilizing the proposed CP, the issue of traditional current-mismatch error is removed. Also, a new glitch-free phase frequency detector (PFD) with removed reset feedback path to drive the proposed charge pump is presented. Post-layout simulation results in TSMC 65 nm CMOS technology with a 1.2 V supply voltage indicate that the proposed CP consumes 5.4 µW at 125 MHz in the lock state. Also, the proposed PFD illustrates ± 2π detection range and consumes 26.33 µW at 125 MHz. When the proposed CP and PFD are applied to a PLL system, settling time is decreased by more than 50 percent. Also, reference spur at 125 MHz frequency offset and at 8 GHz output frequency is −69 dB. The proposed PFD and CP together occupy an area of 0.0058 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. A. Abolhasani, M. Mousazadeh, A. Khoei, high-speed, power efficient, dead-zone-less phase frequency detector with differential structure. Microelectron. J. 97, 104719 (2020)

    Article  Google Scholar 

  2. T. Azadmousavi, M. Azadbakht, E.N. Aghdam, J. Frounchi, A novel zero dead zone PFD and efficient CP for PLL applications. Analog Integr. Circuit Signal Process 95, 83–91 (2018)

    Article  Google Scholar 

  3. R. J. Baker, C. Boyce, Circuit design, layout, and simulation. IEEE Press Series on Microelectronic Systems (2005)

  4. W.-H. Chen, M.E. Inerowicz, B. Jung, Phase frequency detector with minimal blind zone for fast frequency acquisition. IEEE Trans. Circuits Syst. II Express Briefs 57(12), 936–940 (2010)

    Article  Google Scholar 

  5. Y.-S. Choi, D.-H. Han, Gain-boosting charge pump for current matching in phase-locked loop. IEEE Trans. Circuits Syst. II Express Briefs 53(10), 1022–1025 (2006)

    Article  Google Scholar 

  6. H.H. Chung, W. Chen, B. Bakkaloglu, H.J. Barnaby, B. Vermeire, S. Kiaei, Analysis of single events effects on monolithic PLL frequency synthesizers. IEEE Trans. Nucl. Sci. 53(6), 3539–3543 (2006)

    Article  Google Scholar 

  7. H.R. Erfani-Jazi, N. Ghaderi, A divider-less, high speed and wide locking range phase locked loop. AEU-Int. J. Electron. Commun. 69(4), 722–729 (2015)

    Article  Google Scholar 

  8. M. Estebsari, M. Gholami, M.J. Ghahramanpour, A novel charge pump with low current for low-power delay-locked loops. Circuits, Syst. Signal Process. 36(9), 3514–3526 (2017)

    Article  Google Scholar 

  9. H. Ghasemian, A. Ahmadi, E. Abiri, M.R. Salehi, An implementation of a new 11-bit 1.2 GS/s hybrid DAC with a noval 3-bit Sub-DAC. Microelectron. J. 103, 104872 (2020)

    Article  Google Scholar 

  10. M. Gholami, Phase detector with minimal blind zone and reset time for GSamples/s DLLs. Circuits, Syst. Signal Process. 36(9), 3549–3563 (2017)

    Article  Google Scholar 

  11. M.K. Hati, T.K. Bhattacharyya, A high o/p resistance, wide swing and perfect current matching charge pump having switching circuit for PLL. Microelectron. J. 44(8), 649–657 (2013)

    Article  Google Scholar 

  12. M.-S. Hwang, J. Kim, D.-K. Jeong, Reduction of pump current mismatch in charge-pump PLL. Electron. Lett. 45(3), 135–136 (2009)

    Article  Google Scholar 

  13. J.M. Ingino, V.R. von Kaenel, A 4-GHz clock system for a high-performance system-on-a-chip design. IEEE J. Solid-State Circuits 36(11), 1693–1698 (2001)

    Article  Google Scholar 

  14. G.-S. Jeong, W. Kim, J. Park, T. Kim, H. Park, D.-K. Jeong, A 0.015-mm2 inductorless 32-GHz clock generator with wide frequency-tuning range in 28-nm CMOS technology. IEEE Trans. Circuits Syst.: Express Briefs 64(6), 655–659 (2015)

    Google Scholar 

  15. H. Lad Kirankumar, S. Rekha, T. Laxminidhi, A Dead-Zone-Free Zero Blind-Zone High-Speed Phase Frequency Detector for Charge-Pump PLL. Circuits, Syst. Signal Process. 39, 3819–3832 (2020)

    Article  Google Scholar 

  16. J. Lan, F. Lai, Z. Gao, H. Ma, J. Zhang, A nonlinear phase frequency detector for fast-lock phase-locked loops. In: 2009 IEEE 8th International Conference on ASIC, pp. 1117–1120 (2009)

  17. J.-S. Lee, M.-S. Keel, S.-I. Lim, S. Kim, Charge pump with perfect current matching characteristics in phase-locked loops. Electron. Lett. 36(23), 1907–1908 (2000)

    Article  Google Scholar 

  18. P. Liu, P. Sun, J. Jung, D. Heo, PLL charge pump with adaptive body-bias compensation for minimum current variation. Electron. Lett. 48(1), 16–18 (2012)

    Article  Google Scholar 

  19. M. Maiti, S.K. Saw, V. Nath, A. Majumder, A power efficient PFD-CP architecture for high speed clock and data recovery application. Microsyst. Technol. 25, 4615–4624 (2019)

    Article  Google Scholar 

  20. B. Razavi, RF Microelectronics (Pearson Education, London, 2012).

    Google Scholar 

  21. B. Razavi, Design of Analog CMOS Integrated Circuits (McGraw-Hill Education, New York, 2016).

    Google Scholar 

  22. S.M. Schober, J. Choma, A charge transfer-based high performance, ultra-low power CMOS charge pump for PLLs. Analog Integr. Circuits Sig. Process 89(3), 561–573 (2016)

    Article  Google Scholar 

  23. M.-S. Shiau, H.-S. Hsu, C.-H. Cheng, H.-H. Weng, H.-C. Wu, D.-G. Liu, Reduction of current mismatching in the switches-in-source CMOS charge pump. Microelectron. J. 44(12), 1296–1301 (2013)

    Article  Google Scholar 

  24. S. Sofimowloodi, F. Razaghian, M. Gholami, Low-power high-frequency phase frequency detector for minimal blind-zone phase-locked loops. Circuits, Syst. Signal Process. 38(2), 498–511 (2019)

    Article  Google Scholar 

  25. L.-F. Tanguay, M. Sawan, Y. Savaria, A very-high output impedance charge pump for low-voltage low-power PLLs. Microelectron. J. 40(6), 1026–1031 (2009)

    Article  Google Scholar 

  26. A. Tsitouras, F. Plessas, M. Birbas, G. Kalivas, A 1 V CMOS programmable accurate charge pump with wide output voltage range. Microelectron. J. 42(9), 1082–1089 (2011)

    Article  Google Scholar 

  27. C.C. Wang, Z.Y. Hou, C.L. Chen, D. Shmilovitz, A lock detector loop for low-power PLL-based clock and data recovery circuits. Circuits, Syst. Signal Proces. 37(4), 1692–1703 (2018)

    Article  MathSciNet  Google Scholar 

  28. C. Zhang, M. Syrzycki. Modifications of a dynamic-logic phase frequency detector for extended detection range. In 2010 53rd IEEE International Midwest Symposium on Circuits and Systems, pp. 105–108 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ghasemian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemian, H., Bahrami, A., Abiri, E. et al. A New Low-Power Charge Pump with a Glitch-Free PFD for Speedup the Acquisition Process of a PLL in 65 nm CMOS Technology. Circuits Syst Signal Process 40, 2982–3006 (2021). https://doi.org/10.1007/s00034-020-01608-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01608-2

Keyword

Navigation