Skip to main content
Log in

Robust Time-Varying Parameter Proportionate Affine-Projection-Like Algorithm for Sparse System Identification

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Due to its low computational burden, the affine-projection-like (APL) adaptive filtering algorithm has been extensively studied for colored signal input. Recently, a robust APL algorithm was designed by adopting the M-estimate cost function in impulsive noise environment; however, its convergence rate is very slow for sparse system identification. This paper proposed a proportionate APL M-estimate (PAPLM) algorithm, which is derived by using the proportionate matrix to heighten the convergence rate. To maintain good steady-state performance of the PAPLM algorithm, a time-varying parameter PAPLM (TV-PAPLM) algorithm is proposed, which uses a modified exponential function to adjust the time-varying parameter according to the ratio of the mean square score function to the system noise variance. Moreover, the steady-state excess mean-square error performance of PAPLM algorithm is analyzed and obtained in detail. Simulation results reveal that the proposed PAPLM and TV-PAPLM algorithms achieve fast convergence rate and good steady-state performance in sparse system identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. T.Y. Al-Naffouri, A.H. Sayed, Adaptive filters with error nonlinearities: mean-square analysis and optimum design. EURASIP J. Appl. Signal Process. 2001(1), 192–205 (2001)

    Article  Google Scholar 

  2. T.Y. Al-Naffouri, A.H. Sayed, Transient analysis of adaptive filters with error nonlinearities. IEEE Trans. Signal Process. 51(3), 653–663 (2003)

    Article  Google Scholar 

  3. C. Antoñanzas, M. Ferrer, M. de Diego, A. Gonzalez, Affine-projection-like algorithm for active noise control over distributed networks, in 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janerio (2016), pp. 1–5

  4. J.G. Avalos, J. Mendoza, F.A. Serrano, G. Avalos, Set-membership affine projection-like algorithm with evolving order. IEEE Latin Am. Trans. 16(3), 770–776 (2018)

    Article  Google Scholar 

  5. N. Bershad, M. Bonnet, Saturation effects in LMS adaptive echo cancellation for binary data. IEEE Trans. Acoust. Speech Signal Process. 38(10), 1687–1696 (1990)

    Article  Google Scholar 

  6. M.Z.A. Bhotto, A. Antoniou, A family of shrinkage adaptive filtering algorithms. IEEE Trans. Signal Process. 61(7), 1689–1697 (2013)

    Article  MathSciNet  Google Scholar 

  7. M.Z.A. Bhotto, A. Antoniou, Affine-projection-like adaptive filtering algorithms using gradient-based step size. IEEE Trans Circuits Syst. I Reg. Pap. 61(7), 2048–2056 (2014)

    Article  Google Scholar 

  8. F.S. Cattivelli, A.H. Sayed, Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal Process. 58(3), 1035–1048 (2010)

    Article  MathSciNet  Google Scholar 

  9. S.C. Chan, Y. Zhou, On the performance analysis of the least mean M-estimate and normalized least mean M-estimate algorithms with Gaussian inputs and additive Gaussian and contaminated Gaussian noises. J. Signal Process. Syst. 60(1), 81–103 (2010)

    Article  Google Scholar 

  10. B. Chen, L. Xing, J. Liang, N. Zheng, J.C. Principe, Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion. IEEE Signal Process. Lett. 21(7), 880–884 (2014)

    Article  Google Scholar 

  11. B. Chen, J. Wang, H. Zhao, N. Zheng, J.C. Principe, Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Process. Lett. 22(10), 1723–1727 (2015)

    Article  Google Scholar 

  12. B. Chen, L. Xing, H. Zhao, N. Zheng, J.C. Principe, Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 64(13), 3376–3387 (2016)

    Article  MathSciNet  Google Scholar 

  13. B. Chen, L. Xing, B. Xu, H. Zhao, N. Zheng, J.C. Principe, Kernel risk-sensitive loss: definition, properties and application to robust adaptive filtering. IEEE Trans. Signal Process. 65(11), 2888–2901 (2017)

    Article  MathSciNet  Google Scholar 

  14. S.A. Ghauri, M.F. Sohail, System identification using LMS, NLMS and RLS, in 2013 IEEE Student Conference on Research and Developement, Putrajaya (2013), pp. 65–69

  15. V.C. Gogineni, S. Mula, Improved proportionate-type sparse adaptive filtering under maximum correntropy criterion in impulsive noise environments. Digit. Signal Process. 79, 190–198 (2018)

    Article  MathSciNet  Google Scholar 

  16. W. Huang, L. Li, Q. Li, X. Yao, Diffusion robust variable step-size LMS algorithm over distributed networks. IEEE Access 6, 47511–47520 (2018)

    Article  Google Scholar 

  17. S.E. Kim, S.J. Kong, W.J. Song, An affine projection algorithm with evolving order. IEEE Signal Process. Lett. 16(11), 937–940 (2009)

    Article  Google Scholar 

  18. K.H. Kim, Y.S. Choi, S.E. Kim, W.J. Song, An affine projection algorithm with periodically evolved update interval. IEEE Trans. Circuits Syst II Exp. Briefs 58(11), 763–767 (2011)

    Article  Google Scholar 

  19. X. Li, H. Shen, L. Zhang, H. Zhang, Q. Yuan, Dead pixel completion of aqua MODIS band 6 using a robust M-estimator multiregression. IEEE Geosci. Remote Sens. Lett. 11(4), 768–772 (2014)

    Article  Google Scholar 

  20. C. Liu, Z. Zhang, Set-membership normalised least M-estimate spline adaptive filtering algorithm in impulsive noise. Electron. Lett. 54(6), 393–395 (2018)

    Article  Google Scholar 

  21. K. Ozeki, T. Umeda, An adaptive filtering algorithm using orthogonal projection to an affine subspace and its properties. Electron. Commun. Jpn. (Part I: Commun.) 67(5), 19–27 (1984)

    Article  MathSciNet  Google Scholar 

  22. T. Panigrahi, G. Panda, B. Mulgrew, Error saturation nonlinearities for robust incremental LMS over wireless sensor networks. ACM Trans. Sens. Netw. 11(2), 27 (2015)

    Article  Google Scholar 

  23. R. Price, A useful theorem for nonlinear devices having Gaussian inputs. IRE Trans. Inf. Theory 4(2), 69–72 (1958)

    Article  MathSciNet  Google Scholar 

  24. K. Sakhnov, An improved proportionate affine projection algorithm for network echo cancellation, in 2008 15th International Conference on Systems, Signals and Image Processing, Bratislava (2008), pp. 125–128

  25. T. Shao, Y.R. Zheng, J. Benesty, An affine projection sign algorithm robust against impulsive interferences. IEEE Signal Process. Lett. 17(4), 327–330 (2010)

    Article  Google Scholar 

  26. L. Shi, H. Zhao, Y. Zakharov, An improved variable kernel width for maximum correntropy criterion algorithm. IEEE Trans. Circuits Syst. II Exp. Briefs 67(7), 1339–1343 (2020)

    Article  Google Scholar 

  27. H.C. Shin, A.H. Sayed, W.J. Song, Variable step-size NLMS and affine projection algorithms. IEEE Signal Process. Lett. 11(2), 132–135 (2004)

    Article  Google Scholar 

  28. J.W. Shin, C.H. Lee, N.W. Kong, P.G. Park, An affine projection algorithm with update-interval selection. IEEE Trans. Signal Process. 61(18), 4600–4609 (2013)

    Article  MathSciNet  Google Scholar 

  29. P. Song, H. Zhao, Affine-projection-like M-estimate adaptive filter for robust filtering in impulse noise. IEEE Trans. Circuits Syst. II Exp. Briefs 66(12), 2087–2091 (2019)

    Article  Google Scholar 

  30. P. Song, H. Zhao, X. Zeng, Robust diffusion affine projection algorithm with variable step-size over distributed networks. IEEE Access 7, 150484–150491 (2019)

    Article  Google Scholar 

  31. O.J. Tobias, J.C.M. Bermudez, N.J. Bershad, Mean weight behavior of the filtered-X LMS algorithm. IEEE Trans. Signal Process. 48(4), 1061–1075 (2000)

    Article  Google Scholar 

  32. Á.A. Vázquez, E. Pichardo, J.G. Avalos, G. Sánchez, Multichannel active noise control based on filtered-x affine projection-like and LMS algorithms with switching filter selection. Appl. Sci. 9(21), 4669 (2019)

    Article  Google Scholar 

  33. S. Werner, P.S.R. Diniz, Set-membership affine projection algorithm. IEEE Signal Process. Lett. 8(8), 231–235 (2001)

    Article  Google Scholar 

  34. S. Werner, P.S.R. Diniz, J.E.W. Moreira, Set-membership affine projection algorithm with variable data-reuse factor, in Proceedings of the ISCAS, Island of Kos, Greece (2006), pp. 261–264

  35. Z. Yang, Y.R. Zheng, S.L. Grant, Proportionate affine projection sign algorithms for network echo cancellation. IEEE Trans. Audio Speech Lang. Process. 19(8), 2273–2284 (2011)

    Article  Google Scholar 

  36. Y. Yu, H. Zhao, Incremental M-estimate-based least-mean algorithm over distributed network. Electron. Lett. 52(14), 1270–1272 (2016)

    Article  Google Scholar 

  37. Y. Yu, H. Zhao, B. Chen, Steady-state mean-square-deviation analysis of the sign subband adaptive filter algorithm. Signal Process. 120, 36–42 (2016)

    Article  Google Scholar 

  38. Y. Yu, H. Zhao, B. Chen, Sparseness-controlled proportionate affine projection sign algorithms for acoustic echo cancellation. Circuits Syst. Signal Process. 34(12), 3933–3948 (2015)

    Article  MathSciNet  Google Scholar 

  39. Y. Yu, H. Zhao, B. Chen, A new normalized subband adaptive filter algorithm with individual variable step sizes. Circuits Syst. Signal Process. 35(4), 1407–1418 (2016)

    Article  MathSciNet  Google Scholar 

  40. H. Zhao, Z. Zheng, Bias-compensated affine-projection-like algorithms with noisy input. Electron. Lett. 52(9), 712–714 (2016)

    Article  Google Scholar 

  41. Z. Zheng, H. Zhao, Affine projection M-estimate subband adaptive filters for robust adaptive filtering in impulsive noise. Signal Process. 120, 64–70 (2016)

    Article  Google Scholar 

  42. Z. Zheng, H. Zhao, Memory improved proportionate M-estimate affine projection algorithm. Electron. Lett. 51(6), 525–526 (2015)

    Article  Google Scholar 

  43. Y. Zou, S.C. Chan, T.S. Ng, Robust M-estimate adaptive filtering. IEE Proc.-Vis. Image Signal Process. 148(4), 289–294 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was in part by National Natural Science Foundation of China (Grant: 61871461, 61571374, 61433011), in part by Department of Science and Technology of Sichuan Province (Grant: 19YYJC0681, 2020JDTD0009), and in part by the National Rail Transportation Electrification and Automation Engineering Technology Research Center (Grant: NEEC-2019-A02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Calculation of \( \text{E} \left\{ {\varphi^{2} [e(i)]} \right\} \)

Firstly, we calculate terms \( \text{E} \left\{ {\varphi^{2} [e(i)]} \right\} \) of (33) (where the time index i is ignored on the right-hand side)

$$ \begin{aligned} \text{E} \left\{ {\varphi^{2} [e(i)]} \right\} & = P\left( {c(i) = 1} \right)\text{E} \left\{ {\varphi^{2} \left[ {e_{a} (i) + \upsilon_{{\rm g}} (i) + \upsilon_{\omega } (i)} \right]} \right\}{\kern 1pt} {\kern 1pt} {\kern 1pt} + P\left( {c(i) = 0} \right)\text{E} \left\{ {\varphi^{2} \left[ {e_{a} (i) + \upsilon_{{\rm g}} (i)} \right]} \right\} \\ {\kern 1pt} & = p_{r} \text{E} \left\{ {\varphi^{2} [e_{s} (i)]} \right\} + (1 - p_{r} )\text{E} \left\{ {\varphi^{2} [e_{{\rm g}} (i)]} \right\} \\ & = p_{r} \int_{ - \xi }^{\xi } {e_{s}^{2} \frac{1}{{\sqrt {2\pi \sigma_{e,s}^{2} } }}} \exp \left( { - \frac{{e_{s}^{2} }}{{2\sigma_{e,s}^{2} }}} \right){\text{d}}e_{s} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + (1 - p_{r} )\int_{ - \xi }^{\xi } {e_{{\rm g}}^{2} \frac{1}{{\sqrt {2\pi \sigma_{e,g}^{2} } }}} \exp \left( { - \frac{{e_{{\rm g}}^{2} }}{{2\sigma_{e,g}^{2} }}} \right){\text{d}}e_{{\rm g}} \\ {\kern 1pt} & = p_{r} \sigma_{e,s}^{2} \left( {\text{erf} \left( {{\xi \mathord{\left/ {\vphantom {\xi {\sqrt {2\sigma_{e,s}^{2} } }}} \right. \kern-0pt} {\sqrt {2\sigma_{e,s}^{2} } }}} \right) - \xi \exp \left( { - \frac{{\xi^{2} }}{{2\sigma_{e,s}^{2} }}} \right)} \right) + (1 - p_{r} )\sigma_{e,g}^{2} \left( {\text{erf} \left( {{\xi \mathord{\left/ {\vphantom {\xi {\sqrt {2\sigma_{e,g}^{2} } }}} \right. \kern-0pt} {\sqrt {2\sigma_{e,g}^{2} } }}} \right) - \xi \exp \left( { - \frac{{\xi^{2} }}{{2\sigma_{e,g}^{2} }}} \right)} \right) \\ & \triangleq \text{H} \left[ {\text{E} \left\{ {e_{a}^{2} (i)} \right\}} \right] \\ \end{aligned} $$
(A-1)

where \( \text{erf} (x)\,\triangleq\, {2/{\sqrt \pi }}\int_{0}^{x} {\exp ( - t^{2} } ){\text{d}}t \), \( \sigma_{e,g}^{2} = \text{E} \left\{ {e_{a}^{2} (i)} \right\} + \sigma_{{\rm g}}^{2} \), \( \sigma_{e,s}^{2} = \text{E} \left\{ {e_{a}^{2} (i)} \right\} + \sigma_{{\rm g}}^{2} + \sigma_{\omega }^{2} = \text{E} \left\{ {e_{a}^{2} (i)} \right\} + (1 + \kappa )\sigma_{{\rm g}}^{2} \).

Appendix B: Calculation of \( \text{E} \left\{ {e_{a} (i)\varphi [e(i)]} \right\} \)

Then, since \( \upsilon (i) \) is a zero-mean contaminated Gaussian noise sequences and independent of \( e_{a} (i) \), and by using Price theorem [1, 2, 5, 23], we can obtain

$$ \begin{aligned} \text{E} \left\{ {e_{a} (i)\varphi [e(i)]} \right\} & = \text{E} \left\{ {e_{a} } \right\}\text{E} \left\{ {\varphi^{\prime } \left[ {(e_{a} + \upsilon )} \right]} \right\} \\ & = \text{E} \left\{ {e_{a} (e_{a} + \upsilon )} \right\}\text{E} \left\{ {\varphi^{\prime } [e]} \right\} \\ & = \text{E} \left\{ {e_{a}^{2} } \right\}\text{E} \left\{ {\varphi^{\prime } [e]} \right\} \\ & = \text{E} \left\{ {e_{a}^{2} } \right\}\left( {p_{r} \text{E} \left\{ {\varphi^{\prime}[e_{s} ]} \right\} + (1 - p_{r} )\text{E} \left\{ {\varphi^{\prime } [e_{{\rm g}} ]} \right\}} \right) \\ & = \text{E} \left\{ {e_{a}^{2} } \right\}\left( {p_{r} \int_{ - \xi }^{\xi } {\frac{1}{{\sqrt {2\pi \sigma_{e,s}^{2} } }}} \exp \left( { - \frac{{e_{s}^{2} }}{{2\sigma_{e,s}^{2} }}} \right){\text{d}}e_{s} } \right. + \left. {(1 - p_{r} )\int_{ - \xi }^{\xi } {\frac{1}{{\sqrt {2\pi \sigma_{e,g}^{2} } }}} \exp \left( { - \frac{{e_{{\rm g}}^{2} }}{{2\sigma_{e,g}^{2} }}} \right){\text{d}}e_{{\rm g}} } \right) \\ & = \text{E} \left\{ {e_{a}^{2} } \right\}\left( {p_{r} \text{erf} \left( {{\xi \mathord{\left/ {\vphantom {\xi {\sqrt {2\sigma_{e,s}^{2} } }}} \right. \kern-0pt} {\sqrt {2\sigma_{e,s}^{2} } }}} \right)} \right.\left. { + (1 - p_{r} )\text{erf} \left( {{\xi \mathord{\left/ {\vphantom {\xi {\sqrt {2\sigma_{e,g}^{2} } }}} \right. \kern-0pt} {\sqrt {2\sigma_{e,g}^{2} } }}} \right)} \right) \\ & \triangleq \text{E} \left\{ {e_{a}^{2} (i)} \right\}\text{T} \left[ {\text{E} \left\{ {e_{a}^{2} (i)} \right\}} \right] \\ \end{aligned} $$
(B-1)

where \( \varphi^{\prime}[ \cdot ] = {{\partial \varphi [ \cdot ]} \mathord{\left/ {\vphantom {{\partial \varphi [ \cdot ]} {\partial ( \cdot )}}} \right. \kern-0pt} {\partial ( \cdot )}} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, P., Zhao, H., Zeng, X. et al. Robust Time-Varying Parameter Proportionate Affine-Projection-Like Algorithm for Sparse System Identification. Circuits Syst Signal Process 40, 3395–3416 (2021). https://doi.org/10.1007/s00034-020-01628-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01628-y

Keywords

Navigation