Skip to main content
Log in

Chaotic Jerk System with Hump Structure for Text and Image Encryption Using DNA Coding

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Nowadays, advances in technology have led to the expansion of the use and exchange of digital data, which places great importance on the security of these data. The protection of exchanging messages, passwords of email accounts, bank accounts and many others requires the security of textual data. Likewise, the security of medical images, personal images, captures from military satellites, plans to build banks and many others require the protection of digital images. Thereby, jointly based on the special randomness generated by a chaotic Jerk system with hump structure and DNA coding, a cryptosystem is proposed in this article for both text and image encryption. A preliminary study on the dynamic properties of a Jerk system as well as DNA coding is carried out, respectively, for the exploration of the phenomena and the implementation of the encryption technique. Through standard nonlinear analysis tools, the full dynamics of the system is explored and feasibility is confirmed through PSpice investigations. The simulated experimental results, as well as the security analysis, show quantitatively and qualitatively that the proposed encryption technique does not only offer better performance in comparison with some existing algorithms but is also sufficiently fast for practical applications while resisting the known attacks but also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. S.K. Abd-El-Hafiz, A.G. Radwan, S.H.A. Haleem, M.L. Barakat, A fractal-based image encryption system. IET Image Proc. 8(12), 742–752 (2014)

    Article  Google Scholar 

  2. L.M. Adleman, Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  3. G. Alvarez, P. Montoya, G. Pastor, M. Romera, Chaotic cryptosystems, in Proceedings IEEE 33rd Annual 1999 International Carnahan Conference on Security Technology (Cat. No. 99CH36303) (IEEE, 1999), pp. 332–338

  4. H.R. Amani, M. Yaghoobi, A new approach in adaptive encryption algorithm for color images based on DNA sequence operation and hyper-chaotic system. Multimed. Tools Appl. 78(15), 21537–21556 (2019)

    Article  Google Scholar 

  5. J. Awrejcewicz, A. Krysko, V. Soldatov, V. Krysko, Analysis of the nonlinear dynamics of the Timoshenko flexible beams using wavelets. J. Comput. Nonlinear Dyn. 7(1), 011005 (2012). https://doi.org/10.1115/1.4004376

    Article  Google Scholar 

  6. M. Babaei, A novel text and image encryption method based on chaos theory and DNA computing. Nat. Comput. 12(1), 101–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Bayani, K. Rajagopal, A.J.M. Khalaf, S. Jafari, G.D. Leutcho, J. Kengne, Dynamical analysis of a new multistable chaotic system with hidden attractor: antimonotonicity, coexisting multiple attractors, and offset boosting. Phys. Lett. A 383(13), 1450–1456 (2019). https://doi.org/10.1016/j.physleta.2019.02.005

    Article  MathSciNet  Google Scholar 

  8. E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Biham, A. Shamir, Differential cryptanalysis of the full 16-round DES, in Annual International Cryptology Conference (Springer, Berlin, 1992), pp. 487–496

  10. Ü. Çavuşoğlu, S. Panahi, A. Akgül, S. Jafari, S. Kacar, A new chaotic system with hidden attractor and its engineering applications: analog circuit realization and image encryption. Analog Integr. Circuits Signal Process. 98(1), 85–99 (2019)

    Article  Google Scholar 

  11. X. Chai, Z. Gan, K. Yuan, Y. Chen, X. Liu, A novel image encryption scheme based on DNA sequence operations and chaotic systems. Neural Comput. Appl. 31(1), 219–237 (2019)

    Article  Google Scholar 

  12. X. Chai, Y. Chen, L. Broyde, A novel chaos-based image encryption algorithm using DNA sequence operations. Opt. Lasers Eng. 88, 197–213 (2017)

    Article  Google Scholar 

  13. J. Chandrasekaran, B. Subramanyan, G. Raman, Ensemble of blowfish with chaos based s box design for text and image encryption. Int. J. Netw. Secur. Appl. 3(4), 165–173 (2011)

    Google Scholar 

  14. I. Cicek, A.E. Pusane, G. Dundar, A new dual entropy core true random number generator. Analog Integr. Circuits Signal Process. 81(1), 61–70 (2014)

    Article  Google Scholar 

  15. J. Daemen, V.R. Reijndael, The advanced encryption standard. Dr. Dobb’s J. Softw. Tools Prof. Programm. 26(3), 137–139 (2001)

    Google Scholar 

  16. O.S. Faragallah, Efficient confusion–diffusion chaotic image cryptosystem using enhanced standard map. SIViP 9(8), 1917–1926 (2015)

    Article  Google Scholar 

  17. Z. Guan, G. Si, J. Wu, L. Zhu, Z. Zhang, Y. Ma, Utility-privacy tradeoff based on random data obfuscation in internet of energy. IEEE Access 5, 3250–3262 (2017)

    Article  Google Scholar 

  18. R. Guesmi, M.A.B. Farah, A. Kachouri, M. Samet, A novel chaos-based image encryption using DNA sequence operation and Secure Hash Algorithm SHA-2. Nonlinear Dyn. 83(3), 1123–1136 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Hu, Y. Liu, L.-H. Gong, C.-J. Ouyang, An image encryption scheme combining chaos with cycle operation for DNA sequences. Nonlinear Dyn. 87(1), 51–66 (2017)

    Article  Google Scholar 

  20. X. Huang, G. Ye, An image encryption algorithm based on hyper-chaos and DNA sequence. Multimed. Tools Appl. 72(1), 57–70 (2014)

    Article  Google Scholar 

  21. S. Jafari, A. Ahmadi, S. Panahi, K. Rajagopal, Extreme multi-stability: when imperfection changes quality. Chaos Solitons Fractals Interdiscip. J. Nonlinear Sci. Nonequilib. Complex Phenom. 108, 182–186 (2018). https://doi.org/10.1016/j.chaos.2018.02.005

    Article  Google Scholar 

  22. S. Jafari, J.C. Sprott, Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals Interdiscip. J. Nonlinear Sci. Nonequilib. Complex Phenom. 57(C), 79–84 (2013). https://doi.org/10.1016/j.chaos.2013.08.018

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Jithin, S. Sankar, Colour image encryption algorithm combining, Arnold map, DNA sequence operation, and a Mandelbrot set. J. Inf. Secur. Appl. 50, 102428 (2020)

    Google Scholar 

  24. J. Kengne, M. Tsotsop, A. Negou, G. Kenne, On the dynamics of single amplifier biquad based inductor-free hyperchaotic oscillators: a case study. Int. J. Dyn. Control 5(3), 421–435 (2017). https://doi.org/10.1007/s40435-015-0218-6

    Article  MathSciNet  Google Scholar 

  25. J. Kengne, R.L.T. Mogue, T.F. Fozin, A.N.K. Telem, Effects of symmetric and asymmetric nonlinearity on the dynamics of a novel chaotic jerk circuit: coexisting multiple attractors, period doubling reversals, crisis, and offset boosting. Chaos Solitons Fractals Interdiscip. J. Nonlinear Sci. Nonequilib. Complex Phenom. 121, 63–84 (2019). https://doi.org/10.1016/j.chaos.2019.01.033

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Kengne, S. Jafari, Z. Njitacke, M.Y.A. Khanian, A. Cheukem, Dynamic analysis and electronic circuit implementation of a novel 3D autonomous system without linear terms. Commun. Nonlinear Sci. Numer. Simul. 52, 62–76 (2017)

    Article  MATH  Google Scholar 

  27. J. Kengne, V.F. Signing, J. Chedjou, G. Leutcho, Nonlinear behavior of a novel chaotic jerk system: antimonotonicity, crises, and multiple coexisting attractors. Int. J. Dyn. Control 6(2), 468–485 (2018)

    Article  MathSciNet  Google Scholar 

  28. J. Kengne, Z. Njitacke, H. Fotsin, Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83(1–2), 751–765 (2016). https://doi.org/10.1007/s11071-015-2364-y

    Article  MathSciNet  Google Scholar 

  29. L.K. Kengne, J. Kengne, H.B. Fotsin, The effects of symmetry breaking on the dynamics of a simple autonomous jerk circuit. Analog Integr. Circuits Signal Process. 101(3), 489–512 (2019)

    Article  Google Scholar 

  30. W.I. Khedr, A new efficient and configurable image encryption structure for secure transmission. Multimed. Tools Appl. 79, 16797–16821 (2020). https://doi.org/10.1007/s11042-019-7235-y

    Article  Google Scholar 

  31. O.D. King, P. Gaborit, Binary templates for comma-free DNA codes. Discrete Appl. Math. 155(6–7), 831–839 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Kountchou, V.F. Signing, R.T. Mogue, J. Kengne, P. Louodop, Complex dynamic behaviors in a new Colpitts oscillator topology based on a voltage comparator. AEU Int. J. Electron. Commun. 116, 153072 (2020)

    Article  Google Scholar 

  33. T. Li, J. Shi, X. Li, J. Wu, F. Pan, Image encryption based on pixel-level diffusion with dynamic filtering and DNA-level permutation with 3D Latin cubes. Entropy 21(3), 319 (2019)

    Article  MathSciNet  Google Scholar 

  34. T. Li, M. Yang, J. Wu, X. Jing, A novel image encryption algorithm based on a fractional-order hyperchaotic system and DNA computing. Complexity (2017). https://doi.org/10.1155/2017/9010251

    Article  MathSciNet  MATH  Google Scholar 

  35. Y. Li, C. Wang, H. Chen, A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation. Opt. Lasers Eng. 90, 238–246 (2017)

    Article  Google Scholar 

  36. H. Liu, X. Wang, Image encryption using DNA complementary rule and chaotic maps. Appl. Soft Comput. 12(5), 1457–1466 (2012)

    Article  Google Scholar 

  37. S. Liu, J. Sun, Z. Xu, An improved image encryption algorithm based on chaotic system. JCP 4(11), 1091–1100 (2009)

    Google Scholar 

  38. M. Mylrea, Smart energy-internet-of-things opportunities require smart treatment of legal, privacy and cybersecurity challenges. J. World Energy Law Bus. 10(2), 147–158 (2017)

    Article  Google Scholar 

  39. P.K. Naskar, S. Paul, D. Nandy, A. Chaudhuri, DNA encoding and channel shuffling for secured encryption of audio data. Multimed. Tools Appl. 78(17), 25019–25042 (2019)

    Article  Google Scholar 

  40. F. Nazarimehr, J.C. Sprott, Investigating chaotic attractor of the simplest chaotic system with a line of equilibria. Eur. Phys. J. Spec. Top. 229, 1289–1297 (2020)

    Article  Google Scholar 

  41. A.N. Negou, J. Kengne, A minimal three-term chaotic flow with coexisting routes to chaos, multiple solutions, and its analog circuit realization. Analog Integr. Circuits Signal Process. 101(3), 415–429 (2019)

    Article  Google Scholar 

  42. T. Nestor, N.J. De Dieu, K. Jacques, E.J. Yves, A.M. Iliyasu, A.A. Abd El-Latif, A multidimensional hyperjerk oscillator: dynamics analysis, analogue and embedded systems implementation, and its application as a cryptosystem. Sensors 20(1), 83 (2020)

    Article  Google Scholar 

  43. Z. Njitacke, J. Kengne, T. Fozin, B. Leutcha, H. Fotsin, Dynamical analysis of a novel 4-neurons based Hopfield neural network: emergences of antimonotonicity and coexistence of multiple stable states. Int. J. Dyn. Control 7(3), 823–841 (2019). https://doi.org/10.1007/s40435-019-00509-w

    Article  MathSciNet  Google Scholar 

  44. Z. Njitacke, J. Kengne, H. Fotsin, A. Negou, D. Tchiotsop, Coexistence of multiple attractors and crisis route to chaos in a novel. Memristive diode bidge-based Jerk circuit. Chaos Solitons Fractals 91, 180–197 (2016). https://doi.org/10.1016/j.chaos.2016.05.011

    Article  MATH  Google Scholar 

  45. B. Norouzi, S.M. Seyedzadeh, S. Mirzakuchaki, M.R. Mosavi, A novel image encryption based on row-column, masking and main diffusion processes with hyper chaos. Multimed. Tools Appl. 74(3), 781–811 (2015)

    Article  MATH  Google Scholar 

  46. F. Özkaynak, A.B. Özer, S. Yavuz, Security analysis of an image encryption algorithm based on chaos and DNA encoding, in 2013 21st Signal Processing and Communications Applications Conference (SIU) (IEEE, 2013), pp. 1–4

  47. C. Pak, L. Huang, A new color image encryption using combination of the 1D chaotic map. Signal Process. 138, 129–137 (2017)

    Article  Google Scholar 

  48. V.T. Pham, S. Jafari, C. Volos, L. Fortuna, Simulation and experimental implementation of a line–equilibrium system without linear term. Chaos Solitons Fractals 120, 213–221 (2019)

    Article  MathSciNet  Google Scholar 

  49. P. Prakash, K. Rajagopal, I. Koyuncu, J.P. Singh, M. Alcin, B.K. Roy, M. Tuna, A novel simple 4-D hyperchaotic system with a saddle-point index-2 equilibrium point and multistability: design and FPGA-based applications. Circuits Syst. Signal Process. 39, 4259–4280 (2020)

    Article  Google Scholar 

  50. F. PUB, Data Encryption Standard (DES) (FIPS PUB, 1999), pp. 3–46

  51. R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  52. S.S. Roy, S.A. Shahriyar, M. Asaf-Uddowla, K.M.R. Alam, Y. Morimoto, A novel encryption model for text messages using delayed chaotic neural network and DNA cryptography, in 2017 20th International Conference of Computer and Information Technology (ICCIT) (IEEE, 2017), pp. 1–6

  53. V. Signing, J. Kengne, Coexistence of hidden attractors, 2-torus and 3-torus in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity. Int. J. Dyn. Control 6(4), 1421–1428 (2018). https://doi.org/10.1007/s40435-017-0392-9

    Article  MathSciNet  Google Scholar 

  54. V.R.F. Signing, J. Kengne, L.K. Kana, Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity. Chaos Solitons Fractals Interdiscip. J. Nonlinear Sci. Nonequilib. Complex Phenom. 113, 263–274 (2018). https://doi.org/10.1016/j.chaos.2018.06.008

    Article  MathSciNet  MATH  Google Scholar 

  55. V.R.F. Signing, J. Kengne, J.R.M. Pone, Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity. Chaos Solitons Fractals Interdiscip. J. Nonlinear Sci. Nonequilib. Complex Phenom. 118, 187–198 (2019). https://doi.org/10.1016/j.chaos.2018.10.018

    Article  MathSciNet  MATH  Google Scholar 

  56. J.C. Sprott, Simple chaotic systems and circuits. Am. J. Phys. 68(8), 758–763 (2000)

    Article  Google Scholar 

  57. R.W. Tapche, Z.T. Njitacke, J. Kengne, F.B. Pelap, Complex dynamics of a novel 3D autonomous system without linear terms having line of equilibria: coexisting bifurcations and circuit design. Analog Integr. Circuits Signal Process. 103, 57–71 (2020). https://doi.org/10.1007/s10470-020-01591-3

    Article  Google Scholar 

  58. X.J. Tong, Z. Wang, M. Zhang, Y. Liu, H. Xu, J. Ma, An image encryption algorithm based on the perturbed high-dimensional chaotic map. Nonlinear Dyn. 80(3), 1493–1508 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. C. Tresser, P. Coullet, A. Arneodo, On the existence of hysteresis in a transition to chaos after a single bifurcation. J. Phys. Lett. 41(10), 243–246 (1980)

    Article  Google Scholar 

  60. N. Tsafack, J. Kengne, B. Abd-El-Atty, A.M. Iliyasu, K. Hirota, A.A. Abd El-Latif, Design and implementation of a simple dynamical 4-D chaotic circuit with applications in image encryption. Inf. Sci. 515, 191–217 (2020). https://doi.org/10.1016/j.ins.2019.10.070

    Article  MATH  Google Scholar 

  61. A. Ur Rehman, X. Liao, A novel robust dual diffusion/confusion encryption technique for color image based on chaos, DNA and SHA-2. Multimed. Tools Appl. 78(2), 2105–2133 (2019)

    Article  Google Scholar 

  62. P. Vadasz, Local and global transitions to chaos and hysteresis in a porous layer heated from below. Transp. Porous Med. 37(2), 213–245 (1999)

    Article  MathSciNet  Google Scholar 

  63. C.K. Volos, I. Kyprianidis, I. Stouboulos, Text encryption scheme realized with a chaotic pseudo-random bit generator. J. Eng. Sci. Technol. Rev. 6(4), 9–14 (2013)

    Article  Google Scholar 

  64. X.-Y. Wang, Y.-Q. Zhang, X.-M. Bao, A novel chaotic image encryption scheme using DNA sequence operations. Opt. Lasers Eng. 73, 53–61 (2015)

    Article  Google Scholar 

  65. X. Wang, K. Guo, A new image alternate encryption algorithm based on chaotic map. Nonlinear Dyn. 76(4), 1943–1950 (2014)

    Article  MATH  Google Scholar 

  66. X. Wang, C. Liu, A novel and effective image encryption algorithm based on chaos and DNA encoding. Multimed. Tools Appl. 76(5), 6229–6245 (2017)

    Article  Google Scholar 

  67. X. Wang, C. Liu, H. Zhang, An effective and fast image encryption algorithm based on chaos and interweaving of ranks. Nonlinear Dyn. 84(3), 1595–1607 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  68. X. Wang, Y. Wang, X. Zhu, S.J.M.T. Unar, Image encryption scheme based on chaos and DNA plane operations. Multimed. Tools Appl. 78(18), 26111–26128 (2019)

    Article  Google Scholar 

  69. Z. Wang, Z. Wei, K. Sun, S. He, H. Wang, Q. Xu, M. Chen, Chaotic flows with special equilibria. Eur. Phys. J. Spec. Top. 229, 905–919 (2020)

    Article  Google Scholar 

  70. J.D. Watson, F. Crick, A structure for deoxyribose nucleic acid. Nature 171(4356), 737–738 (1953)

    Article  Google Scholar 

  71. X. Wei, L. Guo, Q. Zhang, J. Zhang, S. Lian, A novel color image encryption algorithm based on DNA sequence operation and hyper-chaotic system. J. Syst. Softw. 85(2), 290–299 (2012)

    Article  Google Scholar 

  72. Z. Wei, K. Rajagopal, W. Zhang, S.T. Kingni, A. Akgül, Synchronisation, electronic circuit implementation, and fractional-order analysis of 5D ordinary differential equations with hidden hyperchaotic attractors. Pramana 90(4), 50 (2018). https://doi.org/10.1007/s12043-018-1540-2

    Article  Google Scholar 

  73. X. Wu, H. Kan, J. Kurths, A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps. Appl. Soft Comput. 37, 24–39 (2015)

    Article  Google Scholar 

  74. G. Xiao, M. Lu, L. Qin, X. Lai, New field of cryptography: DNA cryptography. Chin. Sci. Bull. 51(12), 1413–1420 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  75. T. Xie, Y. Liu, J. Tang, Breaking a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik 125(24), 7166–7169 (2014)

    Article  Google Scholar 

  76. W. Yu, Y. Liu, L. Gong, M. Tian, L. Tu, Double-image encryption based on spatiotemporal chaos and DNA operations. Multimed. Tools Appl. 78(14), 20037–20064 (2019)

    Article  Google Scholar 

  77. E.Z. Zefreh, An image encryption scheme based on a hybrid model of DNA computing, chaotic systems and hash functions. Multimed. Tools Appl. 79(33), 24993–25022 (2020)

    Article  Google Scholar 

  78. K. Zhan, D. Wei, J. Shi, J. Yu, Cross-utilizing hyperchaotic and DNA sequences for image encryption. J. Electron. Imaging 26(1), 013021 (2017)

    Article  Google Scholar 

  79. Q. Zhang, L. Guo, X. Wei, Image encryption using DNA addition combining with chaotic maps. Math. Comput. Model. 52(11–12), 2028–2035 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  80. Y.-Q. Zhang, X.-Y. Wang, J. Liu, Z.-L. Chi, An image encryption scheme based on the MLNCML system using DNA sequences. Opt. Lasers Eng. 82, 95–103 (2016)

    Article  Google Scholar 

  81. C. Zhu, Z. Gan, Y. Lu, X. Chai, An image encryption algorithm based on 3-D DNA level permutation and substitution scheme. Multimed. Tools Appl. 79, 7227–7258 (2020). https://doi.org/10.1007/s11042-019-08226-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Folifack Signing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Folifack Signing, V.R., Fozin Fonzin, T., Kountchou, M. et al. Chaotic Jerk System with Hump Structure for Text and Image Encryption Using DNA Coding. Circuits Syst Signal Process 40, 4370–4406 (2021). https://doi.org/10.1007/s00034-021-01665-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01665-1

Keywords

Navigation