Abstract
Blind Source Separation (BSS) has always been an active research field within the signal processing community; it is used to reconstruct primary source signals from their observed mixtures. Independent Component Analysis has been and is still used to solve the BSS problem; however, it is based on the mutual independence of the original source signals. In this paper, we propose to use Copulas to model the dependency structure between these signals, enabling the separation of dependent source components; we also deploy \(\alpha \)-divergence as our cost function to minimize, considering its superiority to handle noisy data as well as its ability to converge faster. We test our approach for various values of alpha and give a comparative study between the proposed methodology and other existing methods; this approach exhibited a higher quality performance and accuracy, especially when the value of \(\alpha \) is equal to \(\frac{1}{2}\), which is equivalent to the Hellinger divergence.















Similar content being viewed by others
Data Availability Statement
The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request
References
K. Abayomi, U. Lall, V. De La Pena. Copula based independent component analysis. SSRN: http://ssrn.com/abstract=1028822 (2008)
M. Ali, N. Mikhail, M. Haq, A class of bivariate distributions including the bivariate logistic. J. Multivar. Anal. 8(3), 405–412 (1978)
S. Ali, S. Silvey, A general class of coefficients of divergence of one distribution from another. J. R. Stat. Soc. Ser. B 28(1), 131–142 (1966)
M. Babaie-Zadeh, C. Jutten, A general approach for mutual information minimization and its application to blind source separation. Signal Process. 85(5), 975–995 (2005)
F. Bach, M. Jordan, Kernel independent component analysis. J. Mach. Learn. Res. 3(Jul), 1–48 (2002)
A. Bell, T. Sejnowski, An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)
R. Beran, Minimum hellinger distance estimates for parametric models. Ann. Stat. 5(3), 445–463 (1977)
J. Cardoso, A: souloumiac, blind signal beamforming for non gaussian signals. Proc. IEEE 140(6), 362–370 (1993)
J. Cardoso, Blind signal separation: statistical principles. Proc. IEEE 86(10), 2009–2025 (1998)
J. Cardoso. Multidimensional independent component analysis, in Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), vol. 4, pp. 1941–1944. (IEEE, 1998)
A. Cichocki, S. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications (Wiley, Hoboken, 2002)
D. Clayton, A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65(1), 141–151 (1978)
P. Comon, Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)
P. Comon, C. Jutten, Handbook of Blind Source Separation : Independent Component Analysis and Applications. Communications Engineering. (Elsevier, Amsterdam, 2010)
P. Comon, C. Jutten, Handbook of Blind Source Separation: Independent Component Analysis and Applications (Academic Press, New York, 2010)
N. Cressie, T. Read, Multinomial goodness-of-fit tests. J. R. Stat. Soc.: Ser. B 46(3), 440–464 (1984)
Eine informationstheoretische ungleichung und ihre anwendung auf den beweis der ergodizitat von markoffschen ketten. Magyar. Tud. Akad. Mat. Kutató Int. Közl 8, 85–108 (1963)
M. El Rhabi, H. Fenniri, A. Keziou, E. Moreau, A robust algorithm for convolutive blind source separation in presence of noise. Signal Process. 93(4), 818–827 (2013)
M. El Rhabi, G. Gelle, H. Fenniri, G. Delauna, A penalized mutual information criterion for blind separation of convolutive mixtures. Signal Process. 84(10), 1979–1984 (2004)
M. Frank, On the simultaneous associativity of \(F(x,\, y)\) and \(x+y-F(x,\, y)\). Aequ. Math. 19(2–3), 194–226 (1979)
B. Gao, W. Woo, S. Dlay, Single-channel source separation using emd-subband variable regularized sparse features. IEEE Trans. Audio Speech Lang Process 19(4), 961–976 (2010)
C. Genest, K. Ghoudi, L. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82(3), 543–552 (1995)
A. Ghazdali, M. El Rhabi, H. Fenniri, A. Hakim, A. Keziou, Blind noisy mixture separation for independent/dependent sources through a regularized criterion on copulas. Signal Process. 131, 502–513 (2017)
A. Ghazdali, A. Hakim, A. Laghrib, N. Mamouni, S. Raghay, A new method for the extraction of fetal ecg from the dependent abdominal signals using blind source separation and adaptive noise cancellation techniques. Theor. Biol. Med. Model. 12(1), 25 (2015)
A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)
A. Hyvärinen, P. Hoyer, M. Inki, Topographic independent component analysis. Neural Comput. 13(7), 1527–1558 (2001)
A. Hyvärinen, J. Hurri, Blind separation of sources that have spatiotemporal variance dependencies. Signal Process. 84(2), 247–254 (2004)
A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis, vol. 46 (Wiley, Hoboken, 2004)
A. Hyvärinen, E. Oja, A fast fixed-point algorithm for independent component analysis. Neural Comput. 9(7), 1483–1492 (1997)
A. Hyvärinen, E. Oja, Independent component analysis: algorithms and applications. Neural Networks 13(4–5), 411–430 (2000)
H. Joe, Multivariate Models and Dependence Concepts, Monographs on Statistics and Applied Probability, vol. 73. (Chapman & Hall, London, 1997)
M. Karoui, Y. Deville, S. Hosseini, A. Ouamri, Blind spatial unmixing of multispectral images: New methods combining sparse component analysis, clustering and non-negativity constraints. Pattern Recognit. 45(12), 4263–4278 (2012)
A. Keziou, H. Fenniri, A. Ghazdali, E. Moreau, New blind source separation method of independent/dependent sources. Signal Process. 104, 319–324 (2014)
R. Li, H. Li, F. Wang, Dependent component analysis: concepts and main algorithms. JCP 5(4), 589–597 (2010)
B. Lindsay, Efficiency versus robustness: the case for minimum Hellinger distance and related methods. Ann. Stat. 22(2), 1081–1114 (1994)
J. Ma, Z. Sun. Copula component analysis, in International Conference on Independent Component Analysis and Signal Separation, pp. 73–80 (Springer, 2007)
E. Miller, J. Fisher III. Independent components analysis by direct entropy minimization. Computer Science, 2003
T. Morimoto, Markov processes and the \(h\)-theorem. J. Phys. S. Jap. 18(3), 328–331 (1963)
G. Naik, W. Wang, Blind Source Separation (Springer, Berlin, 2014), pp. 978–983
R. Nelsen, An Introduction to Copulas, Springer Series in Statistics, 2nd edn. (Springer, New York, 2006)
K. Nordhausen, H. Oja, Independent component analysis: a statistical perspective. Wiley Interdiscip. Rev.: Comput. Stat. 10(5), e1440 (2018)
M. Omelka, I. Gijbels, N. Veraverbeke, Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing. Ann. Statist. 37(5B), 3023–3058 (2009)
D. Pham, Mutual information approach to blind separation of stationary sources. IEEE Trans. Inf. Theory 48(7), 1935–1946 (2002)
M. Puigt, Y. Deville, Time-frequency ratio-based blind separation methods for attenuated and time-delayed sources. Mech. Syst. Signal Process. 19(6), 1348–1379 (2005)
G. Schwarz, Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
B. Silverman, Density Estimation for Statistics and Data Analysis Monographs on Statistics and Applied Probability. (Chapman & Hall, London, 1986)
M. Sklar, Fonctions de répartition à \(n\) dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229–231 (1959)
T. Tanaka, A. Cichocki. Subband decomposition independent component analysis and new performance criteria, in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pages V–541 (IEEE, 2004)
N. Tengtrairat, B. Gao, W. Woo, S. Dlay, Single-channel blind separation using pseudo-stereo mixture and complex 2-d histogram. IEEE Trans. Neural Netw. Learn. Syst. 24(11), 1722–1735 (2013)
N. Tengtrairat, W. Woo, S. Dlay, B. Gao, Online noisy single-channel source separation using adaptive spectrum amplitude estimator and masking. IEEE Trans. Signal Process. 64(7), 1881–1895 (2015)
A. Tharwat, Independent component analysis: an introduction. Appl. Comput. Inform. (2020)
H. Tsukahara, Semiparametric estimation in copula models. Can. J. Stat. 33(3), 357–375 (2005)
K. Yu, W. Woo, S. Dlay. Variational regularized two-dimensional nonnegative matrix factorization with the flexible ß-divergence for single channel source separation (2015)
H. Zayyani, M. Babaie-Zadeh, F. Haddadi, C. Jutten, On the cramer-rao bound for estimating the mixing matrix in noisy sparse component analysis. IEEE Signal Process. Lett. 15, 609–612 (2008)
H. Zayyani, M. Babaie-Zadeh, C. Jutten, An iterative Bayesian algorithm for sparse component analysis in presence of noise. IEEE Trans. Signal Process. 57(11), 4378–4390 (2009)
K. Zhang, L. Chan, An adaptive method for subband decomposition ICA. Neural Comput. 18(1), 191–223 (2006)
Acknowledgements
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Author information
Authors and Affiliations
Contributions
AO, AG, AL and AM performed conceptualization, data curation, formal analysis, investigation, methodology, project administration, validation, roles/writing—original draft, and writing—review and editing.
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare that they have no conflict of interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ourdou, A., Ghazdali, A., Laghrib, A. et al. Blind Separation of Instantaneous Mixtures of Independent/Dependent Sources. Circuits Syst Signal Process 40, 4428–4451 (2021). https://doi.org/10.1007/s00034-021-01672-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-021-01672-2