Skip to main content
Log in

Deep Neural Network for Compressive Sensing and Application to Massive MIMO Channel Estimation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem of sparse signal recovery using a learned dictionary in multiple measurement vectors (MMVs) case. Employing deep neural networks, we provide two new greedy algorithms to solve sparse MMV problems. In the first algorithm, we create a stacked vector of measurement matrix columns and a new measurement matrix, which can be assumed as the Kronecker product of the primary compressive sampling matrix and a unitary matrix. In order to reconstruct sparse vector corresponding to this new set of equations, a four-layer feed-forward neural network is applied. In the second algorithm, joint sparse structure of the sparse vectors is considered. Recurrent neural networks are employed to extract the joint sparsity structure. In addition, we utilize an over-complete dictionary obtained from an unsupervised learning procedure. Simulation results illustrate the benefit of using the proposed methods. Finally, the proposed algorithms are applied for pilot-based channel estimation in massive multiple-input multiple-output systems to improve the channel state information recovery performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  2. E. Balevi, A. Doshi, J.G. Andrews, Massive MIMO channel estimation with an untrained deep neural network. IEEE Trans. Wirel. Commun. 19(3), 2079–2090 (2020)

    Article  Google Scholar 

  3. T. Blumensath, M.E. Davies, Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Dai, M. Olgica, Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Signal Process. 55(5), 2230–2249 (2009)

    MathSciNet  MATH  Google Scholar 

  6. P. Dong et al., Deep CNN-based channel estimation for mm wave massive MIMO systems. IEEE J. Sel. Top. Signal Process. 13(5), 989–1000 (2019)

    Article  Google Scholar 

  7. A.M. Elbir, Deepmusic: multiple signal classification via deep learning. IEEE Sens. Lett. 4(4), 1–20 (2020)

    Article  Google Scholar 

  8. Y.C. Eldar, P. Kuppinger, H. Bolcskei, Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58(6), 3042–3054 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Engan, S.O. Aase, A. Hakon Husoy, Method of optimal directions for frame design. IEEE Int. Conf. Acoust., Speech, Signal Process. 5, 2443–2446 (1999)

    Google Scholar 

  10. S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing. Appl. Numer. Harmon. Anal. 54(1), 151–165 (2017)

    MATH  Google Scholar 

  11. D. Ge, X. Jiang, Y. Ye, A note on the complexity of \(Lp\) minimization. Math. Progr. 129(2), 285–299 (2011)

    Article  MATH  Google Scholar 

  12. G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Iliadis, L. Spinoulas, A.K. Katsaggelos, Deep fully-connected networks for video compressive sensing. Digit. Signal Process. 72, 9–18 (2018)

    Article  Google Scholar 

  14. K. Kreutz-Delgado, J.F. Murray, B.D. Rao, K. Engan, T. Lee, T.J. Sejnowski, Dictionary learning algorithms for sparse representation. Neural Comput. 15(2), 349–396 (2003)

    Article  MATH  Google Scholar 

  15. P. Kyritsi, D.C. Cox, R.A. Valenzuela, Correlation analysis based on MIMO channel measurements in an indoor environment. IEEE J. Sel. Areas Commun. 21(5), 713–720 (2003)

    Article  Google Scholar 

  16. E.G. Larsson, O. Edfors, F. Tufvesson, Massive MIMO for next generation wireless systems. IEEE Commun. Maga. 52(2), 186–195 (2014)

    Article  Google Scholar 

  17. D. Li, R. Yang, X. Li, Radar signal modulation recognition based on deep joint learning. IEEE Access 8, 48515–48528 (2020)

    Article  Google Scholar 

  18. S. Li, W. Zhang, Y. Cui, Joint design of measurement matrix and sparse support recovery method via deep auto-encoder. IEEE Signal Process. Lett. 26(12), 1778–1782 (2019)

    Article  Google Scholar 

  19. H. Liang, L. Zhang, T. Huang, Containment control of semi-Markovian multiagent systems with switching topologies, IEEE Trans. Syst., Man, Cybern.: Syst. (2019) https://doi.org/10.1109/TSMC.2019.2946248

  20. H. Lu, L. Bo, WDLReconNet: compressive sensing reconstruction with deep learning over wireless fading channels. IEEE Access 7, 24440–24451 (2019)

    Article  Google Scholar 

  21. W. Ma, C. Qi, Z. Zhang, Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO. IEEE Trans. Commun. 68(5), 2838–2849 (2020)

    Article  Google Scholar 

  22. X. Ma, Z. Gao, A. Bruckstein, Data-driven deep learning to design pilot and channel estimator for massive MIMO. IEEE Trans. Veh. Technol. 69(5), 5677–5682 (2020)

    Article  Google Scholar 

  23. A. Mahbubul, L.S. Vidyaratne, K.M. Iftekharuddin, Sparse simultaneous recurrent deep learning for robust facial expression recognition. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 4905–4916 (2018)

    Article  Google Scholar 

  24. J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Supervised dictionary learning. Adv. Neural Inf. Process. Syst. 1033–1040 (2009) (Bengio, Y. and Schuurmans, D. and Lafferty, J. and Williams, C. and Culotta, A.)

  25. A. Majumdar, W. Rabab, Real-time reconstruction of EEG signals from compressive measurements via deep learning. IEEE Int. Joint Conf. Neural Netw. 54(11), 2856–2863 (2016)

    Google Scholar 

  26. M. Mardani, E. Gong, J.Y. Cheng, S.S. Vasanawala, L. Xing, Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imaging 38(1), 167–179 (2018)

    Article  Google Scholar 

  27. A. Mousavi, A.B. Patel, R.G. Baraniuk, A deep learning approach to structured signal recovery, in 53rd Annual Allerton Conference on Communication, Control, and Computing (2017), pp. 3–6

  28. A. Mousavi, G. Dasarathy, R.G. Baraniuk, Deepcodec: adaptive sensing and recovery via deep convolutional neural networks, in 55th Annual Allerton Conference on Communication, Control, and Computing (2017), pp. 3–6

  29. P.R. Muduli, R.R. Gunukula, A. Mukherjee, A deep learning approach to fetal-ECG signal reconstruction, in 22nd National Conference on Communication (2016), pp. 4–6

  30. D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images. IEEE Trans. Signal Process. 381, 607–609 (1996)

    Google Scholar 

  32. H. Palangi, R.K. Ward, L. Deng, Distributed compressive sensing: a deep learning approach. IEEE Trans. Signal Process. 64(17), 4504–4518 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Palangi, R.K. Ward, L. Deng, Convolutional deep stacking networks for distributed compressive sensing. Signal Process. 131, 181–189 (2017)

    Article  Google Scholar 

  34. M. Ribeiro, M. Gutoski, A.K. Lazzaretti, H.S. Lopes, One-class classification in images and videos using a convolutional autoencoder with compact embedding. IEEE Access 8, 86520–86535 (2020)

    Article  Google Scholar 

  35. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  MATH  Google Scholar 

  36. S.K. Sahoo, A. Makur, Dictionary training for sparse representation as generalization of \(k\)-means clustering. IEEE Signal Process. Lett. 20(6), 587–590 (2013)

    Article  Google Scholar 

  37. J. Salo, Universal mobile telecommunications system (UMTS); spatial channel model for multiple input multiple output (mimo) simulations, Eur. Telecommun. Stand. Inst., Nice, French, Tech. Rep. GT25 (2010)

  38. O. Simeone, A very brief introduction to machine learning with applications to communication systems. IEEE Trans. Cogn. Commun. Netw. 4(4), 648–664 (2018)

    Article  Google Scholar 

  39. H. Tang, Z. Hu, Research on medical image classification based on machine learning. IEEE Access 8, 93145–93154 (2020)

    Article  Google Scholar 

  40. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc., Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  41. J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. J.A. Tropp, A.C. Gilbert, M.J. Strauss, Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Signal Process. 86(3), 572–588 (2006)

    Article  MATH  Google Scholar 

  43. J.A. Tropp, Algorithms for simultaneous sparse approximation. Part II: convex relaxation. Signal Process. 86(3), 589–602 (2006)

    Article  MATH  Google Scholar 

  44. V. Tsounis, M. Alge, J. Lee, Deepgait: Planning and control of quadrupedal gaits using deep reinforcement learning. IEEE Robot. Autom. Lett. 5(2), 3699–3706 (2020)

    Article  Google Scholar 

  45. X. Wang, H. Hua, Y. Xu, Pilot-assisted channel estimation and signal detection in uplink multi-user MIMO systems with deep learning. IEEE Access 8, 44936–44946 (2020)

    Article  Google Scholar 

  46. L. Zelnik-Manor, K. Rosenblum, Y.C. Eldar, Dictionary optimization for block-sparse representations. IEEE Trans. Signal Process. 60(5), 2386–2395 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Q. Zhou, W. Wang, H. Liang, M. Basin, B. Wang, Observer-based event-triggered fuzzy adaptive bipartite containment control of multi-agent systems with input quantization. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2953573

    Article  Google Scholar 

  48. Y. Zhou, M. Herdin, E. Bonek, Experimental study of MIMO channel statistics and capacity via the virtual channel representation. Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep., 5, 10–15 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Tabataba Vakili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohades, Z., Tabataba Vakili, V. Deep Neural Network for Compressive Sensing and Application to Massive MIMO Channel Estimation. Circuits Syst Signal Process 40, 4474–4489 (2021). https://doi.org/10.1007/s00034-021-01675-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01675-z

Keywords

Navigation