Skip to main content
Log in

Sparsity-based DOA Estimation of 2-D Rectangular Array in the Presence of Gain and Phase Uncertainty

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Direction of arrival (DOA) estimation has paramount importance in array signal processing tasks. A practical issue regarding DOA estimation is the uncertainty in gain/phase of some of the sensor elements. In this paper, we focus on the 2-dimensional DOA (2D-DOA) estimation in the presence of gain/phase uncertainty. We propose a grid-based modeling for the 2D-DOA estimation of the uniform rectangular array considering the array gain/phase uncertainty. In order to solve the modeled problem, we suggest an algorithm to exploit the joint sparse properties of the problem. Furthermore, we have used a zooming-based technique to estimate the 2D-DOAs with much lower computational complexity. The efficiency of the proposed method has been validated through various simulation scenarios which confirm the superiority of the suggested algorithm over its counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Abtahi, M. Azghani, F. Marvasti, An adaptive iterative thresholding algorithm for distributed MIMO radars. IEEE Trans. Aerosp. Electron. Syst. 55(2), 523–533 (2018)

    Article  Google Scholar 

  2. F. Afkhaminia, M. Azghani, 2d off-grid doa estimation using joint sparsity. IET Radar Sonar Navig. 13(9), 1580–1587 (2019)

    Article  Google Scholar 

  3. M. Azghani, M. Karimi, F. Marvasti, Multihypothesis compressed video sensing technique. IEEE Trans. Circuits Syst. Video Technol. 26(4), 627–635 (2015)

  4. M. Azghani, F. Marvasti, Sparse signal processing. In: new perspectives on approximation and sampling theory, pp. 189–213. Springer (2014)

  5. M. Azghani, F. Marvasti, L 2-regularized iterative weighted algorithm for inverse scattering. IEEE Trans. Antennas Prop. 64(6), 2293–2300 (2016)

    Article  MathSciNet  Google Scholar 

  6. E. BouDaher, F. Ahmad, M.G. Amin, Sparsity-based direction finding of coherent and uncorrelated targets using active nonuniform arrays. IEEE Signal Process. Lett. 22(10), 1628–1632 (2015)

    Article  Google Scholar 

  7. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Machine Learn 3(1), 1–122 (2011)

    Article  Google Scholar 

  8. Y. Bresler, A. Macovski, Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1081–1089 (1986)

    Article  Google Scholar 

  9. E.J. Candes, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  10. E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  11. F.J. Chen, S. Kwong, C.W. Kok, Esprit-like two-dimensional doa estimation for coherent signals. IEEE Trans Aerospace Elect. Syst. 46(3), 1477–1484 (2010)

    Article  Google Scholar 

  12. H. Chen, Y. Liu, Q. Wang, W. Liu, G. Wang, Two-dimensional angular parameter estimation for noncircular incoherently distributed sources based on an l-shaped array. IEEE Sens. J. 20(22), 13704–13715 (2020)

    Article  Google Scholar 

  13. Z. Chen, W. Ma, P. Chen, Z. Cao, A robust sparse bayesian learning-based doa estimation method with phase calibration. IEEE Access 8, 141511–141522 (2020)

    Article  Google Scholar 

  14. D.L. Donoho, Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  15. A.M. Elbir, V-shaped sparse arrays for 2-d doa estimation. Circuits Syst. Signal Process 38(6), 2792–2809 (2019)

    Article  Google Scholar 

  16. J. He, Z. Zhang, C. Gu, T. Shu, W. Yu, Cumulant-based 2-d direction estimation using an acoustic vector sensor array. IEEE Trans. Aerospace Elect. Syst. 56(2), 956–971 (2019)

    Article  Google Scholar 

  17. H. Huang, M. Fauß, A.M. Zoubir, Block sparsity-based doa estimation with sensor gain and phase uncertainties. In: 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1–5. IEEE (2019)

  18. C.Y. Hung, J. Zheng, M. Kaveh, Directions of arrival estimation by learning sparse dictionaries for sparse spatial spectra. In: 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 377–380. IEEE (2014)

  19. S. Key, Fundamentals of statistical signal processing: Detection theory, vol. 2 (Prentice Hall. Google Scholar, Upper saddle, 1998)

    Google Scholar 

  20. H. Krim, M. Viberg, Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996)

    Article  Google Scholar 

  21. R. Kumaresan, D.W. Tufts, Estimating the angles of arrival of multiple plane waves. IEEE Trans. Aerospace Electron Syst. 1, 134–139 (1983)

    Article  Google Scholar 

  22. L. Li, T. Fu, X. Wang, M. Huang, L. Wan, Y. Yang, Doa estimation of strictly noncircular sources in wireless sensor array network via block sparse representation. IEEE Access 8, 47500–47508 (2020)

    Article  Google Scholar 

  23. A. Liu, G. Liao, C. Zeng, Z. Yang, Q. Xu, An eigenstructure method for estimating doa and sensor gain-phase errors. IEEE Trans. Signal Process. 59(12), 5944–5956 (2011)

    Article  MathSciNet  Google Scholar 

  24. S. Liu, L. Yang, D. Li, H. Cao, Subspace extension algorithm for 2d doa estimation with l-shaped sparse array. Multidimens. Syst. Signal Process 28(1), 315–327 (2017)

    Article  Google Scholar 

  25. M. Porozantzidou, M. Chryssomallis, Azimuth and elevation angles estimation using 2-d music algorithm with an l-shape antenna. In: Antennas and Propagation Society International Symposium (APSURSI), 2010 IEEE, pp. 1–4. IEEE (2010)

  26. L. Qiong, Y. Zhongfu, G. Long, Doa and doppler frequency estimation with sensor gain and phase uncertainties. In: Neural Networks and Signal Processing, 2003. Proceedings of the 2003 International Conference on, vol. 2, pp. 1314–1317. IEEE (2003)

  27. R. Roy, T. Kailath, Esprit-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  Google Scholar 

  28. R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  29. P. Stoica, P. Babu, J. Li, Spice: a sparse covariance-based estimation method for array processing. IEEE Trans. Signal Process. 59(2), 629–638 (2010)

    Article  MathSciNet  Google Scholar 

  30. A. Swindlehurst, T. Kailath, Azimuth/elevation direction finding using regular array geometries. IEEE Trans Aerospace Electron Syst 29(1), 145–156 (1993)

    Article  Google Scholar 

  31. Y. Tian, H. Yue, X. Rong, Multi-parameters estimation of coherently distributed sources under coexistence of circular and noncircular signals. IEEE Communications Letters (2020)

  32. A. Wang, L. Liu, J. Zhang, Low complexity direction of arrival (doa) estimation for 2d massive mimo systems. In: Globecom Workshops (GC Wkshps), 2012 IEEE, pp. 703–707. IEEE (2012)

  33. D. Wang, K. You, P. Zuo, Y. Wang, W. Guo, T. Peng, Grid adaptive sparse bayesian learning for 2d-doa estimation with l-shape array. In: 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6. IEEE (2019)

  34. G. Wang, J. Xin, N. Zheng, A. Sano, Computationally efficient subspace-based method for two-dimensional direction estimation with l-shaped array. IEEE Trans. Signal Process. 59(7), 3197–3212 (2011)

    Article  MathSciNet  Google Scholar 

  35. T. Wang, B. Ai, R. He, Z. Zhong, Two-dimension direction-of-arrival estimation for massive mimo systems. IEEE Access 3, 2122–2128 (2015)

    Article  Google Scholar 

  36. T. Wang, H. Liao, L. Li, X. Tang, Fast doa estimation with ula in the presence of sensor gain and phase errors. In: Communications, Circuits and Systems, 2009. ICCCAS 2009. International Conference on, pp. 395–397. IEEE (2009)

  37. R.J. Weber, Y. Huang, Performance analysis of direction of arrival estimation with a uniform circular array. In: Aerospace Conference, 2012 IEEE, pp. 1–7. IEEE (2012)

  38. A.J. Weiss, B. Friedlander, Eigenstructure methods for direction finding with sensor gain and phase uncertainties. Circuits Syst Signal Process 9(3), 271–300 (1990)

    Article  MathSciNet  Google Scholar 

  39. Y. Wu, G. Liao, H.C. So, A fast algorithm for 2-d direction-of-arrival estimation. Signal Process 83(8), 1827–1831 (2003)

    Article  Google Scholar 

  40. T. Xia, Y. Zheng, Q. Wan, X. Wang, Decoupled estimation of 2-d angles of arrival using two parallel uniform linear arrays. IEEE Trans. Antennas Propag. 55(9), 2627–2632 (2007)

    Article  Google Scholar 

  41. K. Xu, W. Nie, D. Feng, X. Chen, D. Fang, A multi-direction virtual array transformation algorithm for 2d doa estimation. Signal Process 125, 122–133 (2016)

    Article  Google Scholar 

  42. W. Yung-Yi, S.C. Huang, An esprit-based algorithm for 2d-doa estimation. IEICE Trans Fundam Electron Commun Comput Sci 94(9), 1847–1850 (2011)

    Google Scholar 

  43. M. Zhang, Z. Zhu, A method for direction finding under sensor gain and phase uncertainties. IEEE Trans. Antennas Prop. 43(8), 880–883 (1995)

    Article  Google Scholar 

  44. X. Zhang, L. Liu, P. Chen, Z. Cao, Z. Chen, Gridless sparse direction finding method for correlated signals with gain-phase errors. Electronics 8(5), 557 (2019)

    Article  Google Scholar 

  45. Z. Zheng, Y. Huang, W.Q. Wang, H.C. So, Direction-of-arrival estimation of coherent signals via coprime array interpolation. IEEE Signal Process. Lett. 27, 585–589 (2020)

    Article  Google Scholar 

  46. Z. Zheng, S. Mu, Two-dimensional doa estimation using two parallel nested arrays. IEEE Commun. Lett. 24(3), 568–571 (2019)

    Article  Google Scholar 

  47. Z. Zheng, W.Q. Wang, H. Meng, H.C. So, H. Zhang, Efficient beamspace-based algorithm for two-dimensional doa estimation of incoherently distributed sources in massive mimo systems. IEEE Trans. Veh. Technol. 67(12), 11776–11789 (2018)

    Article  Google Scholar 

  48. M. Zhou, X. Zhang, X. Qiu, C. Wang, Two-dimensional doa estimation for uniform rectangular array using reduced-dimension propagator method. International Journal of Antennas and Propagation 2015 (2015)

  49. I. Ziskind, M. Wax, Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. Acoust. Speech Signal Process. 36(10), 1553–1560 (1988)

    Article  Google Scholar 

  50. M.D. Zoltowski, M. Haardt, C.P. Mathews, Closed-form 2-d angle estimation with rectangular arrays in element space or beamspace via unitary esprit. IEEE Trans. Signal Process. 44(2), 316–328 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Azghani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afkhaminia, F., Azghani, M. Sparsity-based DOA Estimation of 2-D Rectangular Array in the Presence of Gain and Phase Uncertainty. Circuits Syst Signal Process 40, 5014–5032 (2021). https://doi.org/10.1007/s00034-021-01705-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01705-w

Keywords

Navigation