Skip to main content
Log in

A 170 MHz to 330 MHz Wideband 90 nm CMOS RC–CR Phase Shifter with Integrated On-Line Amplitude Locked Loop Calibration for Hartley Image Rejection Transceiver

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A 160 MHz bandwidth 90° active RC–CR phase shifter with integrated on-line amplitude locked loop (ALL) calibration targeted to 802.11ac 5 GHz wireless local area network (WLAN) applications is presented in this paper. The quadrature phase shifter is a key component for transceivers employing the Hartley image rejection architecture. The passive RC–CR phase shifter generates the required two quadrature outputs with an accurate 90° phase shift over the required bandwidth but lack the required accuracy in amplitude matching. A 90 nm CMOS microelectronic implementation of an RC–CR phase shifter is proposed with active resistors that are adjusted by an integrated on-line ALL calibration system to maintain matching amplitudes of the quadrature outputs over the required bandwidth. The on-line ALL calibration system employs peak detectors, comparators, digital logic control, and charge pump to incrementally adjust the active resistors while converging to matched amplitudes similar to the operation of phase-locked loop with a phase-frequency detector and charge pump. The resulting 90 nm implementation supports − 40db to − 70db image rejection ratios (IMMRs) over the IF 170 MHz to 330 MHz bandwidth. The 90 nm CMOS implementation is fully functional considering process variations based on 200 Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.K. Cavers, M.W. Liao, Adaptive compensation for imbalance and offset losses in direct conversion transceivers. IEEE Trans. Veh. Technol. 42(4), 581–588 (1993). https://doi.org/10.1109/25.260752

    Article  Google Scholar 

  2. M. Elmala, G. Ibrahim, Calibration study of dual-band Weaver-Hartley receiver architecture. Microelectr. J. 46(6), 439–446 (2015)

    Article  Google Scholar 

  3. M. Elmala, S. Embabi, Calibration of phase and gain mismatches in Weaver image-reject receiver. IEEE J. Solid-State Circuits 39(2), 283–289 (2004). https://doi.org/10.1109/JSSC.2003.821779

    Article  Google Scholar 

  4. H. Ghonoodi, H.M. Naimi, A series-coupled LC quadrature oscillator using phase/amplitude calibration. Int. J. Circuit Theory Appl. 45(5), 613–624 (2016)

    Article  Google Scholar 

  5. A. Hamidia, M. Honarbar, B. Virdee, Multi-way and poly-phase wideband differential phase shifter based on metamaterial technology. AEU Int. J. Electr. Commun. (2019). https://doi.org/10.1016/j.aeue.2019.152872

    Article  Google Scholar 

  6. B. Jackson, C. Saavedra, A CMOS Ku-band 4x subharmonic mixer. IEEE J. Solid-State Circuits 43(6), 1351–1359 (2008). https://doi.org/10.1109/JSSC.2008.922738

    Article  Google Scholar 

  7. M.F. Lan, A. Tammineedi, R. Geiger, Current mirror layout strategies for enhancing matching performance. Analog Integr. Circuits Signal Process. 28, 9–26 (2001). https://doi.org/10.1023/A:1011237602078

    Article  Google Scholar 

  8. A. Li, Y. Ding, Z. Chen, B. Chi, 1.15GHz image rejection filter with 45 dB image rejection ratio and 8.4 mW DC power in 90 nm CMOS. Microelectr. J. 84, 48–53 (2018). https://doi.org/10.1016/j.mejo.2018.12.003

    Article  Google Scholar 

  9. S. Li, X. Zhang, H. Xue, S. Ren, On-chip self-calibration system for CMOS active inductor band pass filter. AEU Int. J. Electr. Commun. 92, 64–68 (2018)

    Article  Google Scholar 

  10. S. Li, H. Xue, X. Zhang, S. Ren, A low power CMOS amplitude peak detector for on-chip self-calibration applications. IEEE NAECON (2017). https://doi.org/10.1109/NAECON.2017.8268794

    Article  Google Scholar 

  11. C. Meng, T. Wu, J. Syu, S. Yu, K. Tsung, Y. Teng, 2.4/5.7-GHz CMOS dual-band low-IF architecture using Weaver-Hartley image-rejection techniques. IEEE Trans. Microw. Theory Techn. 57(3), 552–561 (2009)

    Article  Google Scholar 

  12. D. Ozis, J. Paramesh, D. Allstot, A CMOS 5GHz image-reject receiver front-end architecture. IEEE RFIC Symp. (2007). https://doi.org/10.1109/RFIC.2007.380892

    Article  Google Scholar 

  13. S. Ren, J. Emmert, R. Siferd, Design and performance of a robust 180 nm CMOS standalone VCO and the integrated PLL. Analog Integr. Circ. Sig. Process. 68(3), 285–298 (2011). https://doi.org/10.1007/s10470-011-9644-3

    Article  Google Scholar 

  14. M. Sarkezeh, A. Safarian, An S-band 6-bit full 360° phase shifter using wideband quadrature generation with pole-zero manipulation. AEU Int. J. Electr. Commun. (2020). https://doi.org/10.1016/j.aeue.2019.153027

    Article  Google Scholar 

  15. A. Szymanski, E. Kurjata-Pfitzner, J. Lesinski, J. Wasowski, The self-calibration method of IR mixer with low IF. Syst. Signal Process. 55, 115–124 (2008). https://doi.org/10.1007/s10470-008-9141-5

    Article  Google Scholar 

  16. P. Tsai, P. Lo, F. Shih, W. Jau, M. Huang, Z. Huang, A 4×4 MIMO-OFDM baseband receiver with 160MHz bandwidth for indoor gigabit wireless communications. IEEE Trans. Circuits Syst I 62(12), 2929–2939 (2015). https://doi.org/10.1109/TCSI.2015.2495740

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Yaghoobi, M. Yavari, H. Ghafoorifard, A 17-to-24 GHz low-power variable-gain low-noise amplifier in 65-nm CMOS for phased-array receivers. Circuits Syst. Signal Process. 38, 5448–5466 (2019). https://doi.org/10.1007/s00034-019-01169-z

    Article  Google Scholar 

  18. J. Yu, F.F. Dai, R.C. Jaeger, A 12-bit Vernier ring time-to-digital converter in 0.13 um CMOS technology. IEEE J. Solid-State Circuits 45(4), 830–842 (2010). https://doi.org/10.1109/JSSC.2010.2040306

    Article  Google Scholar 

  19. X. Zhang, S. Li, R. Siferd, S. Ren, High-sensitivity high-speed dynamic comparator with parallel input clocked switches. AEU Int. J. Electr. Commun. (2020). https://doi.org/10.1016/j.aeue.2020.153236

    Article  Google Scholar 

  20. D. Zhu, W. Chen, S. Pan, Photonics-enabled balanced Hartley architecture for broadband image-reject microwave mixing. Opt. Express (2018). https://doi.org/10.1364/OE.26.028022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XZ: Circuit design, simulation, layout, and paper preparation. PhD. SL: Circuit simulation and reference searching. PhD. RS: Advising and paper revision. PhD. SR: Advising and paper revision.

Corresponding author

Correspondence to Xiaomeng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, S., Siferd, R. et al. A 170 MHz to 330 MHz Wideband 90 nm CMOS RC–CR Phase Shifter with Integrated On-Line Amplitude Locked Loop Calibration for Hartley Image Rejection Transceiver. Circuits Syst Signal Process 40, 5249–5263 (2021). https://doi.org/10.1007/s00034-021-01722-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01722-9

Keywords

Navigation