Skip to main content
Log in

n-th-Order Simple Hyperjerk System with Unstable Equilibrium and Its Application as RPG

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a simple mathematical model with an electronic circuit for n-th-order hyperjerk system. For demonstration, the proposed iterative methodology comes with a fourth-order parametric control hyperjerk system that relies on the integrator, a summer amplifier, and an adjustable hyperbolic sine nonlinearity function. The proposed hyperjerk system exhibits exceptional unstable behavior at equilibrium. However, the corresponding hidden attractor near to equilibrium point has a high degree of disorder and randomness. The proposed n-th-order chaotic system has some important features such as simple model without multiplication term, simple circuitry, use of n number of capacitors, 2\((n-1)\) number of resistors, and sensitivity with passive components. Moreover, various dynamic behavior and typical time series chaotic responses of the proposed design are validated by incorporating bifurcation sequence, numerical simulation, and practical implementation by using Op-Amp. Also, an application perspective of the proposed hyperjerk system is extended to a random pulse generator (RPG). This concept reflects an idea to obtain the RPG by interfacing with the chaotic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. R. Barboza, Dynamics of a hyperchaotic lorenz system. Int. J. Bifurcat. Chaos 17, 4285–4294 (2007)

    Article  MathSciNet  Google Scholar 

  2. R. Barrio et al., When chaos meets hyperchaos: 4D Rossler model. Phys. Lett. A 379, 2300–2305 (2015)

    Article  MathSciNet  Google Scholar 

  3. L. Bin et. al., A random pulse generator for simulating nuclear radiation signals, in 8th International Conference on Intelligent Computation Technology and Automation, Nanchang, pp. 73–76 (2015)

  4. T. Bonny et al., Hardware optimized FPGA implementations of high-speed true random bit generators based on switching-type chaotic oscillators. Circuits Syst. Signal Proc. 38, 1342–1359 (2019)

    Article  Google Scholar 

  5. J.F. Chang et al., Implementation of synchronized chaotic Lü systems and its application in secure communication using PSO-based PI controller. Circuits Syst. Signal Proc. 29, 527–538 (2010)

    Article  MathSciNet  Google Scholar 

  6. K.Y. Cheong, F.C.M. Lau, C.K. Tse, Permutation-based M-ary chaotic-sequence spread-spectrum communication systems. Circuits Syst. Signal Process. 22, 567–577 (2003)

    Article  MathSciNet  Google Scholar 

  7. K.E. Chlouverakis, J.C. Sprott, Chaotic hyperjerk systems. Chaos Solitons Fractals 28, 739–746 (2006)

    Article  MathSciNet  Google Scholar 

  8. L. Chunbiao, J.C. Sprott, Coexisting Hidden Attractors in a 4-D Simplified Lorenz System. Int. J. Bifurcat. Chaos 24, 1450034 (2014)

    Article  MathSciNet  Google Scholar 

  9. F.Y. Dalkiran, J.C. Sprott, Simple Chaotic hyperjerk System. Int. J. Bifurcat. Chaos 26, 1650189 (2016)

    Article  MathSciNet  Google Scholar 

  10. P. Daltzis et al., Hyperchaotic attractor in a novel hyperjerk system with two nonlinearities. Circuits Syst Signal Proc. 37, 613–635 (2018)

    Article  MathSciNet  Google Scholar 

  11. A. Flores-Vergara, E.E. Garcia-Guerrero, E. Inzunza-Gonzalez et al., Implementing a chaotic cryptosystem in a 64-bit embedded system by using multiple-precision arithmetic. Nonlinear Dyn. 96, 497–516 (2019)

    Article  Google Scholar 

  12. G. Gandhi, Improved chua is circuit and its use in hyper chaotic circuit. Anal. Integr. Circuit Signal Process. 46, 173–178 (2006)

    Article  Google Scholar 

  13. M. Joshi, A. Ranjan, New simple chaotic and hyperchaotic system with an unstable node. Int. J. Electron. Commun. (AEU) 108, 1–9 (2019)

    Article  Google Scholar 

  14. M. Joshi, A. Ranjan, An autonomous chaotic and hyperchaotic oscillator using OTRA. Anal. Integr. Circ. Sig. Process. 101, 401–413 (2019)

    Article  Google Scholar 

  15. T. Kapitaniak, L.O. Chua, G.Q. Zhang, Experimental hyperchaos in coupled Chua’s circuits. IEEE Trans. Circuits Syst. 41, 499–503 (1994)

    Article  Google Scholar 

  16. A.K. Kushwaha, S.K. Paul, Implementation inductorless realization of Chua’s oscillator using DVCCTA. Anal. Integr. Circuit Signal Process. 88, 137–150 (2016)

    Article  Google Scholar 

  17. A.K. Kushwaha, S.K. Paul, Chua’s oscillator using operational transresistance amplifier. Revue Roumaine des Sciences Techniques-Serie Electrotechnique et Energetique. 61, 299–203 (2019)

    Google Scholar 

  18. E.N. Lorenz, Deterministic non-periodic flow simple 4D chaotic oscillator. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  19. L.B. Michael, et. al., Multiple pulse generator for ultra-wideband based orthogonal pulse, in IEEE Conference on Ultra Wide-Band System and Technologies, MD USA, pp. 47–51 (2002)

  20. M. Mossa et al., Application of the differential transformation method for the solution of the hyperchaotic Rossler system. Commun. Nonlinear Sci. Numer. Simul. 14, 1509–1514 (2009)

    Article  Google Scholar 

  21. O.E. Rossler, An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)

    Article  MathSciNet  Google Scholar 

  22. R. Senani, S.S. Gupta, Implementation of Chua’s chaotic circuit using current feedback op-amps. Electron. Lett. IEE (UK) 34, 829–830 (1998)

    Article  Google Scholar 

  23. J.C. Sprott, S. Jafari, V.T. Pham, Z. Sadat Hosseini, A chaotic system with a single unstable node. Int. J. Bifurcat. Chaos 379, 2030–2036 (2015)

    MathSciNet  MATH  Google Scholar 

  24. B. Srisuchinwong et al., On a simple single-transistor based chaotic snap circuit: a maximized dampinping ana a stable equilibrium. IEEE Access 7, 116643–116660 (2019)

    Article  Google Scholar 

  25. S. Vaidyanathan et al., Hyperchaos and adaptive control of a novel hyperchaotic system with two quadratic nonlinearities. Stud. Comput. Intell. 688, 773–803 (2017)

    MathSciNet  MATH  Google Scholar 

  26. S. Vaidyanathan et al., Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system via backstepping control method. Arch. Control Sci. 26, 311–338 (2016)

    Article  MathSciNet  Google Scholar 

  27. S. Vaidyanathan et al., A novel 4-D hyperchaotic system with two quadratic nonlinearities and its adaptive synchronisation. Int. J. Control Theory Appl. 12, 5–26 (2018)

    Google Scholar 

  28. B. Vaseghi, M.A. Pourmina, S. Mobayen, Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control. Nonlinear Dyn. 86, 1689 (2017)

    Article  MathSciNet  Google Scholar 

  29. X. Wang, M. Wang, A hyperchaos generated from Lorenz system. Physica A Stat. Mech. Appl. 387, 3751–3758 (2008)

    Article  MathSciNet  Google Scholar 

  30. T. Yoo, J.S. Kang, Y. Yeom, Recoverable random numbers in an internet of things operating system. Entropy 19, 113 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Ranjan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, M., Mohit, P. & Ranjan, A. n-th-Order Simple Hyperjerk System with Unstable Equilibrium and Its Application as RPG. Circuits Syst Signal Process 40, 5913–5934 (2021). https://doi.org/10.1007/s00034-021-01752-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01752-3

Keywords

Navigation