Skip to main content
Log in

Low Integer-Order Approximation of Fractional-Order Systems Using Grey Wolf Optimizer-Based Cuckoo Search Algorithm

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a stable reduced order approximation method of fractional-order systems based on the grey wolf optimizer hybridized with cuckoo search algorithm (GWO-CS). The proposed method is applied to factional order transfer functions (FOTF) in order to obtain a low-order model exhibiting good fits to the Bode’s ideal transfer function (TF) of the original system, taking into account the stability criteria of the reduced model. In the first stage, the Oustaloup approximation of a given FOTF is applied to obtain a high integer-order TF that matches with the original FOTF. In the second stage, The GWO-CS method is compared with the frequency-limited balanced truncation method resulting from Oustaloup approximation of the original FOTF in a specified frequency range and other existing meta-heuristic based model order reduction approaches. Simulation of different numerical examples confirms and validates the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.K. Appiah, Linear model reduction using Hurwitz polynomial approximation. Int. J. Control 28(3), 477–488 (1978). https://doi.org/10.1080/00207177808922472

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Benner, P. Kürschner, J. Saak, Frequency-limited balanced truncation with low-rank approximations. SIAM J. Sci. Comput. 38, A471–A499 (2016)

    Article  MathSciNet  Google Scholar 

  3. B. Bourouba, S. Ladaci, A. Chaabi, Reduced-order model approximation of fractional-order systems using differential evolution algorithm. J. Control Autom. Electr. Syst. 29, 32–43 (2018). https://doi.org/10.1007/s40313-017-0356-5

    Article  Google Scholar 

  4. S. Chakraborty, S.S. Kandala, C.P. Vyasarayani, Reduced ordered modelling of time delay systems using Galerkin approximations and eigenvalue decomposition. Int. J. Dyn. Control 7, 1065–1083 (2019). https://doi.org/10.1007/s40435-019-00510-3

    Article  Google Scholar 

  5. A. Charef, H.H. Sun, Y.Y. Tsao, B. Onaral, Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992). https://doi.org/10.1109/9.159595

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Du, Y. Wei, S. Liang, Y. Wang, Rational approximation of fractional order systems by vector fitting method. Int. J. Control Autom. Syst. 15, 186–195 (2017)

    Article  Google Scholar 

  7. Z. Erlangung, Model order reduction of linear control systems: comparison of balance truncation and singular perturbation approximation with application to optimal control, thesis (2016)

  8. T.J. Freeborn, B. Maundy, A.S. Elwakil, Fractional order models of super capacitors, batteries and fuel cells: a survey. Mater. Renew. Sustain. Energy 4, 1–7 (2015)

    Article  Google Scholar 

  9. R.W. Freund, Model reduction methods based on Krylov subspaces. Acta Numerica 12, 267–319 (2003)

    Article  MathSciNet  Google Scholar 

  10. M. Gonzalez-Lee, H. Vazquez-Leal, J.F. Gomez-Aguilar, L.J. Morales-Mendoza, V.M. Jimenez-Fernandez, J.R. Laguna-Camacho, C.M. Calderon-Ramon, Exploring the cross-correlation as a means for detecting digital watermarks and its reformulation into the fractional calculus framework. IEEE Access 6(6), 71699–71718 (2018). https://doi.org/10.1109/ACCESS.2018.2882405

    Article  Google Scholar 

  11. S. Gugercin, A. Antoulas, A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004)

    Article  MathSciNet  Google Scholar 

  12. A.K. Gupta, D. Kumar, P. Samuel, A meta-heuristic cuckoo search and eigen permutation approach for model order reduction. Sadhana 43, 65 (2018)

    Article  MathSciNet  Google Scholar 

  13. J. Jerabek, R. Sotner, J. Dvorak, J. Polak, D. Kubanek, N. Herencsar, J. Koton, Reconfigurable fractional-order filter with electronically controllable slope of attenuation, pole frequency and type of approximation. J. Circ. Syst. Comput. 26(10), 1750157 (2017)

    Article  Google Scholar 

  14. W. Krajewski, U. Viaro, A method for the integer-order approximation of fractional-order systems. J. Frankl. Inst. 351, 555–564 (2014)

    Article  Google Scholar 

  15. P. Kürschner, Balanced truncation model order reduction in limited time intervals for large systems. Adv. Comput. Math. 44, 1821–1844 (2018)

    Article  MathSciNet  Google Scholar 

  16. J. Lam, Model reduction of delay systems using Padé approximants. Int. J. Control 57(2), 377–39 (1993)

    Article  Google Scholar 

  17. J.E. Lavin-Delgado, J.E. Solis-Perez, J.F. Gomez-Aguilar, R.F. Escobar-Jimenez, Robust optical flow estimation involving exponential fractional-order derivatives. Optik (2020). https://doi.org/10.1016/j.ijleo.2019.163642

    Article  MATH  Google Scholar 

  18. J.E. Lavin-Delgado, J.E. Solis-Perez, J.F. Gomez-Aguilar et al., A new fractional-order mask for image edge detection based on Caputo–Fabrizio fractional-order derivative without singular kernel. Circ. Syst. Signal Process. 39, 1419–1448 (2020). https://doi.org/10.1007/s00034-019-01200-3

    Article  Google Scholar 

  19. J.E. Lavin-Delgado, J.E. Solis-Perez, J.F. Gomez-Aguilar et al., Fractional speeded up robust features detector with the Caputo–Fabrizio derivative. Multimed. Tools Appl. 79, 32957–32972 (2020). https://doi.org/10.1007/s11042-020-09547-5

    Article  Google Scholar 

  20. N. Liu, S. Cao, J. Fei, Fractional-order PID controller for active power filter using active disturbance rejection control. Math. Probl. Eng. 2019, 10 (2019). https://doi.org/10.1155/2019/6907570

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Michiels, G. Hilhorst, G. Pipeleers, T. Vyhlidal, J. Swevers, Reduced modelling and fixed order control of delay systems applied to a heat exchanger. IET Control Theory Appl. 11(18), 3341–3352 (2017)

    Article  MathSciNet  Google Scholar 

  22. S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  23. C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional Order Systems and Controls. Fundamentals and Applications, Ser. Advances in Industrial Control (Springer, London, 2010)

    MATH  Google Scholar 

  24. K. Oldham, J. Spanier, The fractional calculus; theory and applications of differentiation and integration to arbitrary order, in Mathematics in Science and Engineering 5 (Academic Press, New York, 1974)

  25. A. Oustaloup, La Dérivation Non Entière: Théorie, Synthèse et Applications (Hermes, Paris, 1995)

    MATH  Google Scholar 

  26. A. Oustaloup, F. Levron, B. Mathieu, Frequency band complex non integer differentiator? Characterization and synthesis. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  27. A.D. Pano-Azucena, B. Ovilla-Martinez, E. Tlelo-Cuautle, J.M. Munoz-Pacheco, L.G. de la Fraga, FPGA-based implementation of different families of fractional-order chaotic oscillators applying Grunwald–Letnikov method. Commun. Nonlinear Sci. Numer. Simul. 72, 516–527 (2019). https://doi.org/10.1016/j.cnsns.2019.01.014

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Petras, Tuning and implementation methods for fractional order controllers. Fract. Calc. Appl. Anal. 15(2), 282–303 (2012)

    Article  MathSciNet  Google Scholar 

  29. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Ser. Mathematics in Science and Engineering (Elsevier, Amsterdam, 1998), pp. 1–340

    Google Scholar 

  30. M. Rydel, R. Stanisławski, K.J. Latawiec, Balanced truncation model order reduction in limited frequency and time intervals for discrete-time commensurate fractional order systems. Symmetry 11(2), 258 (2019). https://doi.org/10.3390/sym11020258

    Article  MATH  Google Scholar 

  31. Y. Shamash, Model reduction using the Routh stability criterion and the Pade approximation technique. Int. J. Control 21(3), 475–484 (1975). https://doi.org/10.1080/00207177508922004

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Sikander, P. Thakur, Reduced order modelling of linear time-invariant system using modified cuckoo search algorithm. Soft Comput. 22, 3449–3459 (2018)

    Article  Google Scholar 

  33. A. Silva-Juarez, E. Tlelo-Cuautle, L.G. de la Fraga, R. Li, FPAA-based implementation of fractional-order chaotic oscillators using first-order active filter blocks. J. Adv. Res. 25, 77–85 (2020). https://doi.org/10.1016/j.jare.2020.05.014

    Article  Google Scholar 

  34. J.E. Solis-Perez, J.F. Gomez-Aguilar, R.F. Escobar-Jimenez, J. Reyes-Reyes, Blood vessel detection based on fractional Hessian matrix with non-singular Mittag–Leffler Gaussian kernel. Biomed. Signal Process. Control (2019). https://doi.org/10.1016/j.bspc.2019.101584

    Article  Google Scholar 

  35. H.N. Soloklo, N. Bigdeli, Direct approximation of fractional order systems as a reduced integer/fractional-order model by genetic algorithm. Sadhana 45, 277 (2020). https://doi.org/10.1007/s12046-020-01503-1

    Article  MathSciNet  Google Scholar 

  36. R. Stanisławski, M. Rydel, K.J. Latawiec, Modelling of discrete-time fractional-order state space systems using the balanced truncation method. J. Frankl. Inst. 354, 3008–3020 (2017)

    Article  Google Scholar 

  37. Y. Tang, H. Liu, W. Wang, X. Guan, Parameter identification of fractional order systems using block pulse functions. Signal Process. 107, 272–281 (2015)

    Article  Google Scholar 

  38. M. Tavakoli-Kakhki, M. Haeri, Model reduction in commensurate fractional-order linear systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223, 493–505 (2009)

    Google Scholar 

  39. G. Tsirimokou, C. Psychalinos, A.S. Elwakil, K.N. Salama, Electronically tunable fully integrated fractional-order resonator. IEEE Trans. Circ. Syst. II Express Br. Print (2017). https://doi.org/10.1109/TCSII.2017.2684710

    Article  Google Scholar 

  40. C. Vastarouchas, G. Tsirimokou, T.J. Freeborn, C. Psychalinos, Emulation of an electrical-analogue of a fractional-order human respiratory mechanical impedance model using OTA topologies. AEU Int. J. Electron. Commun. 78, 201–208 (2017). https://doi.org/10.1016/j.aeue.2017.03.021

    Article  Google Scholar 

  41. B.W. Wan, Linear model reduction using Mihailov criterion and Pade approximation technique. Int. J. Control 33(6), 1073–1089 (1981). https://doi.org/10.1080/00207178108922977

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Wiora, A. Wiora, Influence of methods approximating fractional-order differentiation on the output signal illustrated by three variants of oustaloup filter. Symmetry 12(11), 1898 (2020). https://doi.org/10.3390/sym12111898

    Article  MATH  Google Scholar 

  43. W. Wyss, The fractional diffusion equation. J. Math. Phys. 27, 2782–2785 (1986)

    Article  MathSciNet  Google Scholar 

  44. H. Xu, X. Liu, J. Su, An improved grey wolf optimizer algorithm integrated with Cuckoo Search, in 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems Technology(IDAACS), pp. 490–493 (2017). https://doi.org/10.1109/IDAACS.2017.8095129

  45. D. Xue, Fractional-Order Control Systems: Fundamentals and Numerical Implementations (De Gruyter, Berlin, 2017)

    Book  Google Scholar 

  46. X.S. Yang, Nature-Inspired Metaheuristic Algorithms (Luniver Press, Apache, 2008)

    Google Scholar 

  47. X. Yang, S. Deb, Cuckoo Search via Levy flights, in World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214(2009). https://doi.org/10.1109/NABIC.2009.5393690

  48. C. Zou, L. Zhang, X. Hu, Z. Wang, T. Wik, M. Pecht, A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors. J. Power Sour. 390, 286–296 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz Mouhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Singular Values Decomposition of the Studied Examples

Appendix A: Singular Values Decomposition of the Studied Examples

Table 15 HSVD of the studied examples

Taking into account the HSVD depicted in Table 15, the reduced order can be calculated as follows:

  1. (1)

    Example 1: \(\sum _{i>2}^{n} \sigma _{i}= 0.0396< \sigma _{2}=0.7695\)

  2. (2)

    Example 2: \(\sum _{i>2}^{n} \sigma _{i}= 0.0772< \sigma _{2}=2.1219\)

  3. (3)

    Example 3: \(\sum _{i>2}^{n} \sigma _{i}= 0.01< \sigma _{2}=0.2420\)

  4. (4)

    Example 4: \(\sum _{i>2}^{n} \sigma _{i}= 0.0375< \sigma _{2}=0.0687\)

Therefore, according to (16) the suitable reduced order for the studied examples is r = 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouhou, A., Badri, A. Low Integer-Order Approximation of Fractional-Order Systems Using Grey Wolf Optimizer-Based Cuckoo Search Algorithm. Circuits Syst Signal Process 41, 1869–1894 (2022). https://doi.org/10.1007/s00034-021-01872-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01872-w

Keywords

Navigation