Skip to main content
Log in

Transient Chaos, Synchronization and Digital Image Enhancement Technique Based on a Novel 5D Fractional-Order Hyperchaotic Memristive System

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Nowadays, the construction of a fractional-order hyperchaotic memristive system (FOHMS) and its real-world applications are fascinating and have received keen attention. A new 5D fractional-order hyperchaotic memristive system that uses a flux-controlled memristor with quadratic nonlinearity is introduced in this paper. The multiple line equilibrium, chaos, hyperchaos, coexisting attractors, periods and limit cycles are the fascinating aspects of this hyperchaotic system. The complex characteristic dynamics such as symmetricity, dissipativity, Lyapunov dynamics, equilibrium point stability and bifurcation diagram of the proposed hyperchaotic system are illustrated in both theoretical and graphical manners. For a particular set of parameter values, curious metastability, which shows transient transfer behaviour, has been discovered. Moreover, complete dislocated general hybrid projective synchronization and a new enhanced digital image algorithm have been introduced based on the 5D FOHMS. The effectiveness of the proposed algorithm has been visualized for various fractional derivatives, which shows the importance of the presented scheme in the digital world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. N. Aguila-Camacho, M.A. Duarte-Mermoud, J.A. Gallegos, Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Ahmed, A. El-Sayed, H.A. El-Saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Phys. Lett. A 358(1), 1–4 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. R.L. Bagley, R. Calico, Fractional order state equations for the control of viscoelasticallydamped structures. J. Guid. Control Dyn. 14(2), 304–311 (1991)

    Article  Google Scholar 

  4. M. Borah, On coexistence of fractional-order hidden attractors. J. Comput. Nonlinear Dyn. 13(9), 090906 (11 pages) (2018)

  5. M. Borah, B.K. Roy, Fractional-order systems with diverse dynamical behaviour and their switching-parameter hybrid-synchronisation. Eur. Phys. J. Spec. Top. 226(16), 3747–3773 (2017)

    Article  Google Scholar 

  6. M. Borah, B.K. Roy, A novel multi-wing fractional-order chaotic system, its synchronisation control and application in secure communication, in 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE) (IEEE, 2018), pp. 1–6

  7. M. Borah, B.K. Roy, Systematic construction of high dimensional fractional-order hyperchaotic systems. Chaos Solitons Fractals 131, 109539 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Borah, P. Roy, B.K. Roy, Synchronisation control of a novel fractional-order chaotic system with hidden attractor, in 2016 IEEE Students’ Technology Symposium (TechSym) (IEEE, 2016), pp. 163–168

  9. M.Y. Chan, T. Zhang, V. Ho, P.S. Lee, Resistive switching effects of HfO\(_2\) high-k dielectric. Microelectron. Eng. 85, 2420–2424 (2008). https://doi.org/10.1016/j.mee.2008.09.021

    Article  Google Scholar 

  10. L. Chen, Y. He, X. Lv, R. Wu, Dynamic behaviours and control of fractional-order memristor-based system. Pramana 85(1), 91–104 (2015)

    Article  Google Scholar 

  11. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  12. M.F. Danca, N. Kuznetsov, Matlab code for Lyapunov exponents of fractional-order systems. Int. J. Bifurc. Chaos 28(05), 1850067 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Delavari, M. Mohadeszadeh, Robust finite-time synchronization of non-identical fractional-order hyperchaotic systems and its application in secure communication. IEEE/CAA J. Automatica Sinica 6(1), 228–235 (2016)

    Article  MathSciNet  Google Scholar 

  14. K. Diethelm, N.J. Ford, A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1), 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Dong, M. Yuan, S. Du, Z. Chen, A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl. Math. Model. 73, 40–71 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Khan, N. Khan, A novel finite-time terminal observer of a fractional-order chaotic system with chaos entanglement function. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7802

    Article  Google Scholar 

  17. A. Khan, Nasreen, A comparative study between two different adaptive sliding mode control techniques. Int. J. Appl. Comput. Math. 7(4), 1–18 (2021)

    Article  Google Scholar 

  18. A. Khan, Nasreen, Synchronization of non-integer chaotic systems with uncertainties, disturbances and input non-linearities. Kyungpook Math. J. 61(2), 353–369 (2021)

    MathSciNet  MATH  Google Scholar 

  19. L. Kocarev, U. Parlitz, Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76(11), 1816 (1996)

    Article  Google Scholar 

  20. Y.C. Lai, T. Tél, Transient Chaos: Complex Dynamics on Finite Time Scales, vol. 173 (Springer-Verlag, 2011)

  21. C. Li, G. Chen, Chaos and hyperchaos in the fractional-order Rössler equations. Physica A Stat. Mech. Appl. 341, 55–61 (2004)

    Article  Google Scholar 

  22. C. Li, Z. Gong, D. Qian, Y. Chen, On the bound of the Lyapunov exponents for the fractional differential systems. Chaos Interdiscip. J. Nonlinear Sci. 20(1), 013127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Li, J. Xu, J. Mou, F. Yang, Fractional-order 4d hyperchaotic memristive system and application in color image encryption. EURASIP J. Image Video Process. 2019(1), 22 (2019)

    Article  Google Scholar 

  24. Z. Ma, Z. Liu, G. Zhang, A new method to realize cluster synchronization in connected chaotic networks. Chaos Interdiscip. J. Nonlinear Sci. 16(2), 023103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Mainieri, J. Rehacek, Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82(15), 3042 (1999)

    Article  Google Scholar 

  26. P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Synchronization and an application of a novel fractional order king cobra chaotic system. Chaos Interdiscip. J. Nonlinear Sci. 24(3), 033105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Synchronization of a novel fractional order stretch-twist-fold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES). Nonlinear Dyn. 77(4), 1547–1559 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, A novel cascade encryption algorithm for digital images based on anti-synchronized fractional order dynamical systems. Multimed. Tools Appl. 76(22), 23517–23538 (2017)

    Article  Google Scholar 

  29. P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Sliding mode control for generalized robust synchronization of mismatched fractional order dynamical systems and its application to secure transmission of voice messages. ISA Trans. 82, 51–61 (2018)

    Article  Google Scholar 

  30. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Y.V. Pershin, M. Di Ventra, Spin memristive systems: spin memory effects in semiconductor spintronics. Phys. Rev. B 78, 113309 (2008). https://doi.org/10.1103/PhysRevB.78.113309

    Article  Google Scholar 

  32. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198 (Elsevier, 1998)

  33. P. Prakash, K. Rajagopal, I. Koyuncu, J.P. Singh, M. Alcin, B.K. Roy, M. Tuna, A novel simple 4-d hyperchaotic system with a saddle-point index-2 equilibrium point and multistability: design and FPGA-based applications. Circuits Syst. Signal Process. 39, 4259–4280 (2020)

    Article  Google Scholar 

  34. D.A. Prousalis, C.K. Volos, I.N. Stouboulos, I.M. Kyprianidis, Hyperchaotic memristive system with hidden attractors and its adaptive control scheme. Nonlinear Dyn. 90(3), 1681–1694 (2017)

    Article  MathSciNet  Google Scholar 

  35. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76(11), 1804 (1996)

    Article  MATH  Google Scholar 

  36. M.E. Sahin, Z.G.C. Taskiran, H. Guler, S.E. Hamamci, Application and modeling of a novel 4d memristive chaotic system for communication systems. Circuits Syst. Signal Process. 39, 3320–3349 (2020)

    Article  Google Scholar 

  37. A.I. Saichev, G.M. Zaslavsky, Fractional kinetic equations: solutions and applications. Chaos Interdiscip. J. Nonlinear Sci. 7(4), 753–764 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. H. Singh, A. Kumar, L. Balyan, G.K. Singh, A novel optimally weighted framework of piecewise gamma corrected fractional order masking for satellite image enhancement. Comput. Electr. Eng. 75, 245–261 (2019)

    Article  Google Scholar 

  39. J.P. Singh, K. Rajagopal, B.K. Roy, A new 5d hyperchaotic system with stable equilibrium point, transient chaotic behaviour and its fractional-order form. Pramana 91(3), 1–10 (2018)

    Article  Google Scholar 

  40. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Erratum: The missing memristor found. Nature 459(4), 80–83 (2008). https://doi.org/10.1038/nature08166

    Article  Google Scholar 

  41. J. Sun, Y. Shen, Q. Yin, C. Xu, Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos Interdiscip. J. Nonlinear Sci. 23(1), 013140 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Tél, The joy of transient chaos. Chaos Interdiscip. J. Nonlinear Sci. 25(9), 097619 (2015). https://doi.org/10.1063/1.4917287

    Article  MathSciNet  Google Scholar 

  43. S. Vaidyanathan, S. Rasappan, Hybrid synchronization of hyperchaotic qi and lü systems by nonlinear control, in International Conference on Computer Science and Information Technology (Springer, 2011), pp. 585–593

  44. M. Vidyasagar, Nonlinear Systems Analysis, vol. 42 (SIAM, 2002)

  45. G. Wang, F. Yuan, G. Chen, Y. Zhang, Coexisting multiple attractors and riddled basins of a memristive system. Chaos Interdiscip. J. Nonlinear Sci. 28(1), 013125 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. T. Wang, L. Chen, T. Li, S. Fei, Composite anti-disturbance synchronization control for delayed neural networks subject to unknown disturbances. Circuits Syst. Signal Process. 40(4), 1–20 (2020)

    Google Scholar 

  47. X.Y. Wang, P. Sun, Multi-switching synchronization of chaotic system with adaptive controllers and unknown parameters. Nonlinear Dyn. 63(4), 599–609 (2011)

    Article  MathSciNet  Google Scholar 

  48. X. Xia, Y. Zeng, Z. Li, Coexisting multiscroll hyperchaotic attractors generated from a novel memristive jerk system. Pramana 91(6), 1–14 (2018)

    Article  Google Scholar 

  49. F. Yang, J. Mou, J. Liu, C. Ma, H. Yan, Characteristic analysis of the fractional-order hyperchaotic complex system and its image encryption application. Signal Process. 169, 107373 (2020)

    Article  Google Scholar 

  50. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008). https://doi.org/10.1038/nnano.2008.160

    Article  Google Scholar 

  51. S. Yang, C. Hu, J. Yu, H. Jiang, Finite-time cluster synchronization in complex-variable networks with fractional-order and nonlinear coupling. Neural Netw. 135, 212–224 (2021)

    Article  Google Scholar 

  52. Y.G. Yang, B.W. Guan, J. Li, D. Li, Y.H. Zhou, W.M. Shi, Image compression-encryption scheme based on fractional order hyper-chaotic systems combined with 2D compressed sensing and DNA encoding. Opt. Laser Technol. 119, 105661 (2019)

    Article  Google Scholar 

  53. F. Yu, L. Liu, B. He, Y. Huang, C. Shi, S. Cai, Y. Song, S. Du, Q. Wan, Analysis and fpga realization of a novel 5d hyperchaotic four-wing memristive system, active control synchronization, and secure communication application. Complexity 2019, 4047957 (2019). https://doi.org/10.1155/2019/4047957

    Article  Google Scholar 

  54. Q. Yuan, F.Y. Yang, L. Wang, A note on hidden transient chaos in the Lorenz system. Int. J. Nonlinear Sci. Numer. Simul. 18(5), 427–434 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Nasreen (19/06/2016(i)EU-V) thanks to UGC, India, for providing financial support as S.R.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasreen Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N., Muthukumar, P. Transient Chaos, Synchronization and Digital Image Enhancement Technique Based on a Novel 5D Fractional-Order Hyperchaotic Memristive System. Circuits Syst Signal Process 41, 2266–2289 (2022). https://doi.org/10.1007/s00034-021-01892-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01892-6

Keywords

Navigation