Skip to main content
Log in

New Multiplier-Less Compact Tunable Charge-Controlled Memelement Emulator Using Grounded Passive Elements

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Unlike the memristor element, the unavailability of any physical architectures for other memelements (memcapacitor and meminductor) has enhanced the significance of emulation of these elements through analogue circuit implementation. The proposed work aims to present a charge-controlled memelement emulator using a VDCC (voltage differencing current conveyor) and an OTA (operational transconductance Amplifier) with grounded passive elements. The developed emulator can be used to implement the behaviour of memristor and memcapacitor elements through the proper selection of passive elements. The proposed emulator circuit offers the advantage of adjustability of realized behaviour electronically and through employed passive elements as well. In the open research repertoire, the presented memelement emulator is the most optimized as compared to any other emulator ever reported for the realization of charge-dependent dual memelement functions with single-circuit architecture. It is due to the non-employment of any external memristor or bulky passive inductor and no use of any analogue multiplier in the circuit structure. The performance of the circuit has been checked through PSPICE-generated simulations for the use of 0.18um CMOS technology. The paper also discusses the application of realized memcapacitor in the modelling of Amoeba behaviour, and the results have been presented. We have also shown the commercial IC-based realization of the proposed memelement emulator and discussed the generated results through macro-model-based simulations as well as experimental.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Availability of Data and Material

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Code Availability

Not applicable.

References

  1. http://www.ti.com/product/LM13700

  2. https://www.analog.com/media/en/technical-documentation/data-sheets/AD844.pdf

  3. M.T. Abuelma’atti, Z.J. Khalifa, A new memristor emulator and its application in digital modulation. Analog Integr. Circuits Signal Process. 80, 577–584 (2014)

    Article  Google Scholar 

  4. M.T. Abuelma’atti, Z.J. Khalifa, A continuous-level memristor emulator and its application in a multivibrator circuit. AEU—Int. J. Electron. Commun. 69, 771–775 (2015)

    Article  Google Scholar 

  5. K. Agashe, N. Sarwade, S. Joshi, P. Soman, Comprehensive study of current controlled memristor models. Int. J. Sci. Eng. Res. 7, 1–6 (2016)

    Google Scholar 

  6. A.G. Alharbi, Z.J. Khalifa, M.E. Fouda, M.H. Chowdhury, A new simple emulator circuit for current controlled memristor. In 2015 IEEE Int. Conf. Electron. Circuits, Syst. (IEEE, 2015)

  7. A.G. Alharbi, Z.J. Khalifa, M.E. Fouda, M.H. Chowdhury, Memristor emulator based on single CCII. In 2015 27th Int. Conf. Microelectron. (IEEE, 2015)

  8. A.F. Arbel, L. Goldminz, Output stage for current-mode feedback amplifiers, theory and applications. Analog Integr. Circuits Signal Process. 2, 243–255 (1992)

    Article  Google Scholar 

  9. Y. Babacan, An operational transconductance amplifier-based memcapacitor and meminductor. Istanb. Univ.—J. Electr. Electron. Eng. 18, 36–38 (2018)

    Google Scholar 

  10. Y. Babacan, A. Yesil, F. Kacar, Memristor emulator with tunable characteristic and its experimental results. AEU—Int. J. Electron. Commun. 81, 99–104 (2017)

    Article  Google Scholar 

  11. D. Biolek, Z. Biolek, V. Biolkova, SPICE modeling of memristive, memcapacitative and meminductive systems. In 2009 Eur. Conf. Circuit Theory Des. (IEEE, 2009).

  12. D. Biolek, V. Biolková, Z. Kolka, J. Dobeš, Analog emulator of genuinely floating memcapacitor with piecewise-linear constitutive relation. Circuits, Syst. Signal Process. 35, 43–62 (2016)

    Article  MathSciNet  Google Scholar 

  13. D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17, 15–32 (2008)

    Google Scholar 

  14. Z.G. Cam, H. Sedef, A new floating memristance simulator circuit based on second generation current conveyor. J. Circuits, Syst. Comput. 26, 1750029 (2017)

    Article  Google Scholar 

  15. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  16. E. Demir, A. Yesil, Y. Babacan, T. Karacali, Operational transconductance amplifier-based electronically controllable memcapacitor and meminductor emulators. J. Circuits, Syst. Comput. 30, 2150222 (2021)

    Article  Google Scholar 

  17. A.S. Elwakil, M.E. Fouda, A.G. Radwan, A simple model of double-loop hysteresis behavior in memristive elements. IEEE Trans. Circuits Syst. II Express Briefs 60, 487–491 (2013)

    Article  Google Scholar 

  18. M.E. Fouda, A.G. Radwan, Charge controlled memristor-less memcapacitor emulator. Electron. Lett. 48, 1454–1455 (2012)

    Article  Google Scholar 

  19. A. I. Hussein and M. E. Fouda, A simple MOS realization of current controlled memristor emulator. In 2013 25th Int. Conf. Microelectron. (IEEE, 2013).

  20. H. Kim, M.P. Sah, C. Yang, S. Cho, L.O. Chua, Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I Regul. Pap. 59, 2422–2431 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Konal, F. Kacar, Electronically tunable memcapacitor emulator based on operational transconductance amplifiers. J. Circuits, Syst. Comput. 30, 2150082 (2021)

    Article  Google Scholar 

  22. M. Konal, F. Kacar, Y. Babacan, Electronically controllable memcapacitor emulator employing VDCCs. AEU—Int. J. Electron. Commun. 140, 153932 (2021)

    Article  Google Scholar 

  23. Y. Liu, H.H.-C. Iu, Novel floating and grounded memory interface circuits for constructing mem-elements and their applications. IEEE Access 8, 114761–114772 (2020)

    Article  Google Scholar 

  24. Y. Pershin, S. La Fontaine, M. Di Ventra, Memristive model of amoeba learning. Nat. Preced. 80, 021926 (2008)

    Google Scholar 

  25. Y.V. Pershin, M. Di Ventra, Emulation of floating memcapacitors and meminductors using current conveyors. Electron. Lett. 47, 243–244 (2011)

    Article  Google Scholar 

  26. D. Prasad, A. Ahmad, A. Shukla, A. Mukhopadhyay, B.B. Sharma, M. Srivastava, Novel VDCC based low-pass and high-pass Ladder filters. In 2015 Annu. IEEE India Conf. (IEEE, 2015)

  27. D. Prasad, D.R. Bhaskar, M. Srivastava, New single VDCC-based explicit current-mode SRCO employing all grounded passive components. Electron. ETF 18, 81–88 (2014)

    Article  Google Scholar 

  28. S.S. Prasad, P. Kumar, R.K. Ranjan, Resistorless memristor emulator using CFTA and its experimental verification. IEEE Access 9, 64065–64075 (2021)

    Article  Google Scholar 

  29. N. Raj, R.K. Ranjan, F. Khateb, M. Kumngern, Mem-elements emulator design with experimental validation and its application. IEEE Access 9, 69860–69875 (2021)

    Article  Google Scholar 

  30. R.K. Ranjan, N. Raj, N. Bhuwal, F. Khateb, Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU—Int. J. Electron. Commun. 82, 177–190 (2017)

    Article  Google Scholar 

  31. R.K. Ranjan, N. Rani, R. Pal, S.K. Paul, G. Kanyal, Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectron. J. 60, 119–128 (2017)

    Article  Google Scholar 

  32. R.K. Ranjan, S. Sagar, S. Roushan, B. Kumari, N. Rani, F. Khateb, High-frequency floating memristor emulator and its experimental results. IET Circuits, Devices Syst. 13, 292–302 (2019)

    Article  Google Scholar 

  33. R.K. Ranjan, P.K. Sharma, R. Sagar, N. Raj, B. Kumari, F. Khateb, Memristor emulator circuit using multiple-output OTA and its experimental results. J. Circuits, Syst. Comput. 28, 1950166 (2019)

    Article  Google Scholar 

  34. F.J. Romero, D.P. Morales, A. Godoy, F.G. Ruiz, I.M. Tienda-Luna, A. Ohata, N. Rodriguez, Memcapacitor emulator based on the Miller effect. Int. J. Circuit Theory Appl. 47, 572–579 (2019)

    Article  Google Scholar 

  35. F.J. Romero, A. Ohata, A. Toral-Lopez, A. Godoy, D.P. Morales, N. Rodriguez, Memcapacitor and meminductor circuit emulators: a review. Electronics 10, 1225 (2021)

    Article  Google Scholar 

  36. C. Sánchez-López, L.E. Aguila-Cuapio, A 860kHz grounded memristor emulator circuit. AEU—Int. J. Electron. Commun. 73, 23–33 (2017)

    Article  Google Scholar 

  37. C. Sánchez-López, M.A. Carrasco-Aguilar, C. Muñiz-Montero, A 16Hz–160kHz memristor emulator circuit. AEU—Int. J. Electron. Commun. 69, 1208–1219 (2015)

    Article  Google Scholar 

  38. F. Setoudeh, M.M. Dezhdar, A new design and implementation of the floating-type charge-controlled memcapacitor emulator. Majlesi J. Telecommun. Devices 9, 1–15 (2020)

    Google Scholar 

  39. V.K. Sharma, M.S. Ansari, T. Parveen, Tunable memristor emulator using off-the-shelf components. Proc. Comput. Sci. 171, 1064–1073 (2020)

    Article  Google Scholar 

  40. P.K. Sharma, R.K. Ranjan, F. Khateb, M. Kumngern, Charged controlled mem-element emulator and its application in a chaotic system. IEEE Access 8, 171397–171407 (2020)

    Article  Google Scholar 

  41. A. Singh, S.K. Rai, VDCC-based memcapacitor/meminductor emulator and its application in adaptive learning circuit. Iran. J. Sci. Technol. Trans. Electr. Eng. 45, 1151–1163 (2021)

    Article  Google Scholar 

  42. M. Srivastava, D. Prasad, VDCC based dual-mode quadrature sinusoidal oscillator with outputs at appropriate impedance levels. Adv. Electr. Electron. Eng. 14, 168–177 (2016)

    Google Scholar 

  43. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  44. Z.G.Ç. Taşkıran, M. Sağbaş, U.E. Ayten, H. Sedef, A new universal mutator circuit for memcapacitor and meminductor elements. AEU—Int. J. Electron. Commun. 119, 153180 (2020)

    Article  Google Scholar 

  45. M. Di Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97, 1717–1724 (2009)

    Article  Google Scholar 

  46. J. Vista, A. Ranjan, Design of memcapacitor emulator using DVCCTA. J. Phys. Conf. Ser. 1172, 012104 (2019)

    Article  Google Scholar 

  47. J. Vista, A. Ranjan, Simple charge controlled floating memcapacitor emulator using DXCCDITA. Analog Integr. Circuits Signal Process. 104, 37–46 (2020)

    Article  Google Scholar 

  48. F.Z. Wang, L.O. Chua, X. Yang, N. Helian, R. Tetzlaff, T. Schmidt, C. Li, J.M.G. Carrasco, W. Chen, D. Chu, Adaptive neuromorphic architecture (ANA). Neural Netw. 45, 111–116 (2013)

    Article  Google Scholar 

  49. A. Yesil, Y. Babacan, Electronically controllable memcapacitor circuit with experimental results. IEEE Trans. Circuits Syst. II Express Briefs 68, 1443–1447 (2021)

    Article  Google Scholar 

  50. A. Yeşil, Y. Babacan, F. Kaçar, A new DDCC based memristor emulator circuit and its applications. Microelectron. J. 45, 282–287 (2014)

    Article  Google Scholar 

  51. A. Yesil, F. Kacar, H. Kuntman, New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering 20, 632–637 (2011)

    Google Scholar 

  52. D. Yu, X. Zhao, T. Sun, H.H.C. Iu, T. Fernando, A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Trans. Circuits Syst. II Express Briefs 67, 1334–1338 (2020)

    Article  Google Scholar 

  53. F. Yuan, Y. Li, G. Wang, G. Dou, G. Chen, Complex dynamics in a memcapacitor-based circuit. Entropy 21, 188 (2019)

    Article  MathSciNet  Google Scholar 

  54. F. Yuan, G. Wang, X. Wang, Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. Chaos Interdiscip. J. Nonlinear Sci. 27, 033103 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Q. Zhao, C. Wang, X. Zhang, A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos Interdiscip. J. Nonlinear Sci. 29, 013141 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. Y.Y. Zhen, T. Heng, H.C. Guan, L.O. Chua, What are memristor, memcapacitor, and meminductor? IEEE Trans. Circuits Syst. II Express Briefs 62, 402–406 (2015)

    Article  Google Scholar 

  57. H. Zhiheng, L. Yingxiang, J. Li, Y. Juebang, Chaos in a charge-controlled memcapacitor circuit. In 2010 Int. Conf. Commun. Circuits Syst. (IEEE, 2010)

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Srivastava.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, K., Srivastava, M. New Multiplier-Less Compact Tunable Charge-Controlled Memelement Emulator Using Grounded Passive Elements. Circuits Syst Signal Process 41, 2429–2465 (2022). https://doi.org/10.1007/s00034-021-01895-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01895-3

Keywords

Navigation