Skip to main content
Log in

Higher-Order Statistics-Based Non-uniform Linear Array for Underdetermined DoA Estimation of Non-circular Signals

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Statistical properties of signals play an essential role in designing algorithms for Direction of Arrival (DoA) estimation. Many times, signals are assumed to be circular, and circular moments are used thereof. Practically, non-circular signals exist and provide extra statistical information in terms of pseudo/non-circular moments/cumulants which can be used to improve the performance of any parameter estimation algorithm. This paper uses the 2qth-order non-circular cumulants along with circular cumulants to solve the underdetermined non-Gaussian non-circular system. A generalized method based on higher-order non-circularity has been proposed to design the physical array such that the corresponding virtual array provides the larger degree of freedoms than existing arrays. The weight function, an important metric, to measure the stability of the corresponding virtual array, has also been evaluated analytically. Numerical simulation demonstrates performance gain due to the proposed array structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets generated or analyzed during this current study are available from the corresponding author on reasonable request.

Notes

  1. \(\frac{\lambda }{2}\) is considered as one unit separation, almost all the separations are expressed in terms of this unit unless specified.

References

  1. H. Abeida, J. Delmas, Music-like estimation of direction of arrival for noncircular sources. IEEE Trans. Signal Process. 54(7), 2678–2690 (2006)

    Article  Google Scholar 

  2. H. Abeida, J. Delmas, Statistical performance of music-like algorithms in re-solving noncircular sources. IEEE Trans. Signal Process. 56(9), 4317–4329 (2008)

    Article  MathSciNet  Google Scholar 

  3. A. Ahmed, Y.D. Zhang, B. Himed, Effective nested array design for fourth-order cumulant-based DOA estimation, in IEEE Radar Conference (RadarConf) (2017), pp. 0998–1002

  4. H. Alquran, M. Alqudah, I. Abu-Qasmieh, A. Al-Badarneh, S. Almashaqbeh, ECG classification using higher order spectral estimation and deep learning techniques. Neural Netw. World 29(4), 207–219

  5. J.-F. Cardoso, E. Moulines, Asymptotic performance analysis of direction-finding algorithms based on fourth-order cumulants. IEEE Trans. Signal Process. 43(1) (1995)

  6. P. Chevalier, L. Albera, A. Ferreol, P. Comon, On the virtual array concept for higher order array processing. IEEE Trans. Signal Process. 53(4), 1254–1271 (2005)

    Article  MathSciNet  Google Scholar 

  7. P. Chevalier, A. Ferreol, L. Albera, High-resolution direction finding from higher order statistics: the \(2q\)-MUSIC algorithm. IEEE Trans. Signal Process. 54(8), 2986–2997 (2006)

    Article  Google Scholar 

  8. Z. Chen, Y. Ding, S. Ren, Z. Chen, A novel noncircular MUSIC algorithm based on the concept of the difference and sum coarray. Sensors 18(2), 344 (2018)

    Article  Google Scholar 

  9. P. Charge, Y. Wang, J. Saillard, A non-circular sources direction finding method using polynomial rooting. Signal Process. 81, 1765–1770 (2001)

    Article  Google Scholar 

  10. H. Cox, Resolving power and sensitivity to mismatch of optimum array processors. J. Acoust. Soc. Am. 50, 771–785 (1973)

    Article  Google Scholar 

  11. J.-P. Delmas, H. Abeida, Stochastic Cramer–Rao bound for noncircular signals with application to DOA estimation. IEEE Trans. Signal Process. 52(11), 3192–3199 (2004)

    Article  MathSciNet  Google Scholar 

  12. M.C. Dogan, J.M. Mendel, Applications of cumulants to array processing part I: aperture extension and array calibration. IEEE Trans. Signal Process. 43(5), 1200–1216 (1995)

    Article  Google Scholar 

  13. J. Eriksson, E. Ollila, V. Koivunen, Essential statistics and tools for complex random variables. IEEE Trans. Signal Process. 58(10), 5400–5408 (2010)

    Article  MathSciNet  Google Scholar 

  14. A. Ferreol, P. Chevalier, New insights into second and fourth-order direction finding for non-circular sources, in Proceedings of IEEE Sensor Array Multichannel Signal Process (Spain, 2014), pp. 465–468

  15. A. Ferreol, P. Chevalier, Higher Order Direction Finding for Arbitrary Non Circular Sources: The NC-2qMUSIC Algorithm (EUSIPCO, Aalborg, 2010)

    Google Scholar 

  16. F.F. Gao, A. Nallanathan, Y. Wang, Improved music under the coexistence of both circular and noncircular sources. IEEE Trans. Signal Process. 56(7), 3033–3038 (2008)

    Article  MathSciNet  Google Scholar 

  17. X. Gou, Z. Liu, X. Yougen, Biquaternion cumulant-MUSIC for DOA estimation of noncircular signals. Signal Process. 93(4), 874–881 (2013)

    Article  Google Scholar 

  18. P. Gounon, C. Adnet, J. Galy, Localization angulaire de signaux non circulaires. Traitement du Signal 15(1), 17–23 (1998)

    MATH  Google Scholar 

  19. P. Gupta, M. Agrawal, Study of DoA estimation algorithm for underdetermined cases, in OCEANS 2018, MTS/IEEE (Kobe, Japan, 2018)

  20. P. Gupta, M. Agrawal, Noncircularity-exploitation to design the sparse array for DoA estimation, in OCEANS 2018, MTS/IEEE (Charleston, US, 2018)

  21. P. Gupta, M. Agrawal, Design and analysis of the sparse array for DoA estimation of noncircular signals. IEEE Trans. Signal Process. (2018). https://doi.org/10.1109/TSP.2018.2883035

    Article  MATH  Google Scholar 

  22. P. Gupta, M. Agrawal, DOA estimation of non-circular signals using fourth order cumulant in underdetermined cases, in 2018 IEEE International Workshop on Signal Processing Systems (SiPS) (Cape Town, 2018)

  23. P. Gupta, M. Agrawal, Computation of weight function of 2qth order virtual array to analyse the estimation performance, in Eleventh IEEE Sensor Array ANS Multichannel Signal Processing Workshop (Hangzhou, China, 2020)

  24. P. Han, H. Xu, B. Ba, Y. Zhang, Direction-of-arrival estimation in a mixture of multiple circular and non-circular signals using nested array. IEEE Access 8, 105237–105249 (2020)

    Article  Google Scholar 

  25. M. Haardt, F. Roemer, Enhancements of unitary ESPRIT for non-circular sources, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (2004)

  26. J. He, L. Li, T. Shu, Sparse nested arrays with spatially spread orthogonal dipoles: high accuracy passive direction finding with less mutual coupling. IEEE Trans. Aerosp. Electron. Syst. 57(4), 2337–2345 (2021). https://doi.org/10.1109/TAES.2021.3054056

    Article  Google Scholar 

  27. Z.T. Huang, Z.M. Liu, J. Liu, Y.Y. Zhou, Performance analysis of music for non-circular signals in the presence of mutual coupling. IET Radar Sonar Navig. 4(5), 703–711 (2010)

    Article  Google Scholar 

  28. C. Liu, P.P. Vaidyanathan, Super nested arrays: linear sparse arrays with reduced mutual coupling-part I: fundamentals. IEEE Trans. Signal Process. 64(15), 3997–4012 (2016). https://doi.org/10.1109/TSP.2016.2558159

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Liu, P.P. Vaidyanathan, Tensor MUSIC in multidimensional sparse arrays, in 2015 49th Asilomar Conference on Signals, Systems and Computers (2015), pp. 1783–1787. https://doi.org/10.1109/ACSSC.2015.7421458

  30. J. Li, Y. Wang, C. Le Bastard, W. Zongze, S. Men, Low-complexity highorder propagator method for near-field source localization. Sens. MDPI 19(1), 54 (2019)

    Article  Google Scholar 

  31. J. Liu, Z. Huang, Y. Zhou, Extended \(2q\)-MuSiC algorithm for noncircular signals. Signal Process. 88, 1327–1339 (2008)

    Article  Google Scholar 

  32. M. Nasrolahzadeh, Z. Mohammadpoory, J. Haddadnia, A novel method for early diagnosis of Alzheimer’s disease based on higher-order spectral estimation of spontaneous speech signals. Cognit. Neurodyn. 10, 495–503 (2016)

  33. H. Ould-Baba, J. Antoni, V. Robin, Multidimensional Independent Component Analysis with Higher-Order Cumulant Matrices for Vector Sources with Possibly Differing Dimensions. (hal-01006087v1) (2014)

  34. P. Pal, P.P. Vaidyanathan, Multiple level nested array: an efficient geometry for \(2q\)th order cumulant based array processing. IEEE Trans. Signal Process. 60(3), 1253–1269 (2012)

    Article  MathSciNet  Google Scholar 

  35. P. Pal, P.P. Vaidyanathan, Nested arrays: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 58(8), 4167–4181 (2010)

    Article  MathSciNet  Google Scholar 

  36. Z. Peng, Y. Ding, S. Ren, X. Wang, Extended transformed nested arrays for DoA estimation of non-circular sources. IEEE Access 8, 162350–162362 (2020). https://doi.org/10.1109/ACCESS.2020.3021077

    Article  Google Scholar 

  37. B. Porat, B. Friedlander, Direction finding algorithms based on higher order statistics. IEEE Trans. Signal Process. 39(9), 2016–2024 (1991)

    Article  Google Scholar 

  38. W. Rao, D. Li, J.Q. Zhang, A tensor-based approach to L-shaped arrays processing with enhanced degrees of freedom. IEEE Signal Process. Lett. 25(2), 1–5 (2018). https://doi.org/10.1109/LSP.2017.2783370

    Article  Google Scholar 

  39. Q. Shen, W. Liu, W. Cui, S. Wu, Extension of co-prime arrays based on the fourth-order difference coarray concept. IEEE Signal Process. Lett. 23(5), 615–619 (2016)

    Article  Google Scholar 

  40. L. Shen, Z. Liu, X. Gou, Y. Xu, Polynomial-rooting based fourth-order MUSIC for direction-of-arrival estimation of noncircular signals. J. Syst. Eng. Electron. 25(6), 942–948 (2014). https://doi.org/10.1109/JSEE.2014.00108

    Article  Google Scholar 

  41. J. Shi, F. Wen, T. Liu, Nested MIMO radar: coarrays, tensor modeling, and angle estimation. IEEE Trans. Aerosp. Electron. Syst. 57(1), 573–585 (2021). https://doi.org/10.1109/TAES.2020.3034012

    Article  Google Scholar 

  42. W. Si, Z. Peng, C. Hou, F. Zeng, Improved nested arrays with sumdifference coarray for DOA estimation. IEEE Sens. J. 19(16), 6986–6997 (2019)

    Article  Google Scholar 

  43. J. Steinwandt, F. Roemer, M. Haardt, Analytical performance assessment of ESPRIT-type algorithms for coexisting circular and strictly non-circular signals, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (Shanghai, China, 2016), pp. 2931–2935

  44. J. Steinwandt, F. Roemer, M. Haardt, G. Del Galdo, R-dimensional ESPRIT-type algorithms for strictly second-order non-circular sources and their performance analysis. IEEE Trans. Signal Process. 62(18), 4824–4838 (2014)

    Article  MathSciNet  Google Scholar 

  45. T.E. Tuncer, B. Friedlander, Classical and Modern Direction-of-Arrival Estimation (Academic Press, Cambridge, 2009)

    Google Scholar 

  46. Q. Wang, X. Wang, H. Chen, X. Zhu, W. Liu, W. Yan, L. Wang, An effective localization method for mixed far-field and near-field strictly non-circular sources. Digital Signal Process. 94, 125–136 (2019)

    Article  Google Scholar 

  47. L. Wan, K. Liu, Y.-C. Liang, T. Zhu, DOA and polarization estimation for non-circular signals in 3-D millimeter wave polarized massive MIMO systems. IEEE Trans. Wirel. Commun. 20(5), 3152–3167 (2021). https://doi.org/10.1109/TWC.2020.3047866

    Article  Google Scholar 

  48. T. Wang, B.P. Ng, M.H. Er, DOA estimation of amplitude modulated signals with less array sensors than sources, in Proceedings of IEEE ICASSP (Kyoto, 2012), pp. 2565–2568

  49. Y. Wang, W. Wu, X. Zhang, W. Zheng, Transformed nested array designed for DOA estimation of non-circular signals: reduced sumdifference co-array redundancy perspective. IEEE Commun. Lett. 24(6), 1262–1265 (2020)

    Article  Google Scholar 

  50. W. Xie, X.Y. Zhang, L.B. Chen, J.H. Yin, Q. Wan, Fast DOA estimation algorithm for noncircular sources with central symmetrical array, in Proceedings of 12th International Conference on Signal Processing (ICSP) (2014), pp. 267–270

  51. W. Yunfei, S. Jinqing, Z. Xiaofei, H. Yi, D. Xiangrui, Noncircular signals for nested array: sum-difference co-array and direction of arrival estimation algorithm. IET Radar Sonar Navig. 14(1), 27–35 (2020)

    Article  Google Scholar 

  52. F. Yan, M. Jin, X. Qiao, Low-complexity DOA estimation based on compressed MUSIC and its performance analysis. IEEE Trans. Signal Process. 61(8), 1915–1930 (2013). https://doi.org/10.1109/TSP.2013.2243442

    Article  MathSciNet  MATH  Google Scholar 

  53. X.M. Yang, G.J. Li, Z. Zheng, DoA estimation of non-circular signal based on sparse representation. Wirel. Pers. Commun. 82, 2363–2375 (2015)

    Article  Google Scholar 

  54. A. Zoubir, P. Chargé, Y. Wang, Non-circular sources localization with ESPRIT, in Proceedings of the 6th European Conference on Wireless Technology (2003)

  55. H. Zheng, C. Zhou, Y. Gu, Z. Shi, Two-dimensional DOA estimation for coprime planar array: a coarray tensor-based solution, in ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2020), pp. 4562–4566. https://doi.org/10.1109/ICASSP40776.2020.9053860

  56. Y. Zhang, B.P. Ng, MUSIC-like DOA estimation without estimating the number of sources. IEEE Trans. Signal Process. 58(3), 1668–1676 (2010). https://doi.org/10.1109/TSP.2009.2037074

    Article  MathSciNet  MATH  Google Scholar 

  57. C. Zhou, Y. Gu, Y.D. Zhang, Z. Shi, T. Jin, X. Wu, Compressive sensing-based coprime array direction-of-arrival estimation. IET Commun. 11(11), 1719–1724 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Agrawal, M. Higher-Order Statistics-Based Non-uniform Linear Array for Underdetermined DoA Estimation of Non-circular Signals. Circuits Syst Signal Process 41, 2719–2749 (2022). https://doi.org/10.1007/s00034-021-01903-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01903-6

Keywords

Navigation