Skip to main content
Log in

Accelerated Identification Algorithms for Exponential Nonlinear Models: Two-Stage Method and Particle Swarm Optimization Method

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The traditional least squares (LS) and gradient descent (GD) algorithms can estimate the parameters of the regression models. They can be inefficient when the models have complex structures: (1) the unknown parameters in the information vector make the algorithm be impossible to update the parameters; (2) the zigzagging nature of the gradient descent algorithm and the complex structures lead to slow convergence rates; and (3) the step-size and derivative function calculations may be unsolvable for complex nonlinear models. This paper proposes two kinds of algorithms for exponential nonlinear models. The first is the two-stage algorithm, which decomposes the complex model into a linear part and a nonlinear part, where the linear part is estimated using the LS algorithm and the nonlinear part is identified based on the GD algorithm. The second is the particle swarm optimization algorithm which can simultaneously obtain all the parameters. To increase the convergence rates, the Aitken method is also introduced. The simulation results demonstrate the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.Y. Chen, M. Gan, Generalized exponential autoregressive models for nonlinear time series: stationarity, estimation and applications. Inf. Sci. 438, 46–57 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. G.Y. Chen, M. Gan, C.L.P. Chen, L. Chen, A two-stage estimation algorithm based on variable projection method for GPS positioning. IEEE Trans. Instrum. Meas. 67(11), 2518–2525 (2018)

    Article  Google Scholar 

  3. G.Y. Chen, M. Gan, C.L.P. Chen et al., A regularized variable projection algorithm for separable nonlinear least-squares problems. IEEE Trans. Autom. Control 64(2), 526–537 (2019)

    MathSciNet  MATH  Google Scholar 

  4. J. Chen, Q.M. Zhu, M.F. Hu et al., Improved gradient descent algorithms for time-delay rational state-space systems: intelligent search method and momentum method. Nonlinear Dyn. 101(1), 361–373 (2020)

    Article  Google Scholar 

  5. J. Chen, Q. Zhu, Y.J. Liu, Interval error correction auxiliary model based gradient iterative algorithms for multirate ARX models. IEEE Trans. Autom. Control 65(10), 4385–4392 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Ding, Coupled-least-squares identification for multivariable systems. IET Control Theory Appl. 7(1), 68–79 (2013)

    Article  MathSciNet  Google Scholar 

  7. F. Ding, Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling. Appl. Math. Model. 37(4), 1694–1704 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Ding, Combined state and least squares parameter estimation algorithms for dynamic systems. Appl. Math. Model. 38(1), 403–412 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Ding, Y.J. Liu, B. Bao, Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 226(1), 43–55 (2012)

    Google Scholar 

  10. F. Ding, G. Liu, X.P. Liu, Parameter estimation with scarce measurements. Automatica 47(8), 1646–1655 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Ding, G. Liu, X.P. Liu, Partially coupled stochastic gradient identification methods for non-uniformly sampled systems. IEEE Trans. Autom. Control 55(8), 1976–1981 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Ding, F. Ding, X.P. Liu, G. Liu, Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data. IEEE Trans. Autom. Control 56(11), 2677–2683 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Gan, G.Y. Chen, L. Chen et al., Term selection for a class of separable nonlinear models. IEEE Trans. Neural Netw. Learn. Syst. 31(2), 445–451 (2020)

    Article  MathSciNet  Google Scholar 

  14. M. Gan, C.L.P. Chen, G.Y. Chen, L. Chen, On some separated algorithms for separable nonlinear squares problems. IEEE Trans. Cybern. 48(10), 2866–2874 (2018)

    Article  Google Scholar 

  15. M. Gan, Y. Guan, G.Y. Chen, C.L.P. Chen, Recursive variable projection algorithm for a class of separable nonlinear models. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2020.3026482

    Article  MathSciNet  Google Scholar 

  16. M.M. Gao, J.S. Zhao, W. Sun, Stochastic \(H_2/H_\infty \) control for discrete-time mean-field systems with Poisson jump. J. Frankl. Inst. 358(6), 2933–2947 (2021)

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Ji, X.K. Jiang, L.J. Wan, Hierarchical least squares parameter estimation algorithm for two-input Hammerstein finite impulse response systems. J. Frankl. Inst. 357(8), 5019–5032 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Ji, Z. Kang, Three-stage forgetting factor stochastic gradient parameter estimation methods for a class of nonlinear systems. Int. J. Robust Nonlinear Control 31(3), 871–987 (2021)

    Article  MathSciNet  Google Scholar 

  19. Y. Ji, Z. Kang, X.M. Liu, The data filtering based multiple-stage Levenberg–Marquardt algorithm for Hammerstein nonlinear systems. Int. J. Robust Nonlinear Control 31(15), 7007–7025 (2021)

    Article  MathSciNet  Google Scholar 

  20. Y. Ji, Z. Kang, C. Zhang, Two-stage gradient-based recursive estimation for nonlinear models by using the data filtering. Int. J. Control Autom. Syst. 19(8), 2706–2715 (2021)

    Article  Google Scholar 

  21. Y. Ji, C. Zhang, Z. Kang, T. Yu, Parameter estimation for block-oriented nonlinear systems using the key term separation. Int. J. Robust Nonlinear Control 30(9), 3727–3752 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Jiao, D.Q. Wang, J.L. Qiu, A GRU-RNN based momentum optimized algorithm for SOC estimation. J. Power Sources 459, 228051 (2020)

    Article  Google Scholar 

  23. J. Kennedy, The particle swarm: social adaptation of knowledge, in Proceedings of the IEEE International Conference on Evolutionary Computation (1997), pp. 303–308

  24. J.L. Kong, H.X. Wang, X.Y. Wang, X.B. Jin, X. Fang, S. Lin, Multi-stream hybrid architecture based on cross-level fusion strategy for fine-grained crop species recognition in precision agriculture. Comput. Electron. Agric. 185, 106134 (2021)

    Article  Google Scholar 

  25. J.H. Li, T.C. Zong, J.P. Gu, L. Hua, Parameter estimation of Wiener systems based on the particle swarm iteration and gradient search principle. Circuits Syst. Signal Process. 39(7), 3470–3495 (2020)

    Article  MATH  Google Scholar 

  26. J.H. Li, T.C. Zong, G.P. Lu, Parameter identification of Hammerstein–Wiener nonlinear systems with unknown time delay based on the linear variable weight particle swarm optimization. ISA Trans. (2021). https://doi.org/10.1016/j.isatra.2021.03.021

    Article  Google Scholar 

  27. M.H. Li, X.M. Liu, Maximum likelihood least squares based iterative estimation for a class of bilinear systems using the data filtering technique. Int. J. Control Autom. Syst. 18(6), 1581–1592 (2020)

    Article  Google Scholar 

  28. M.H. Li, X.M. Liu, Maximum likelihood hierarchical least squares-based iterative identification for dual-rate stochastic systems. Int. J. Adapt. Control Signal Process. 35(2), 240–261 (2021)

    Article  MathSciNet  Google Scholar 

  29. M.H. Li, X.M. Liu, Iterative identification methods for a class of bilinear systems by using the particle filtering technique. Int. J. Adapt. Control Signal Process. 35(11), 2056–2074 (2021)

    Article  MathSciNet  Google Scholar 

  30. M.H. Li, X.M. Liu, Iterative parameter estimation methods for dual-rate sampled-data bilinear systems by means of the data filtering technique. IET Control Theory Appl. 15(9), 1230–1245 (2021)

    Article  Google Scholar 

  31. M.H. Li, X.M. Liu, The filtering-based maximum likelihood iterative estimation algorithms for a special class of nonlinear systems with autoregressive moving average noise using the hierarchical identification principle. Int. J. Adapt. Control Signal Process. 33(7), 1189–1211 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Y.J. Liu, An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 50(3), 962–970 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. X.M. Liu, Y.M. Fan, Maximum likelihood extended gradient-based estimation algorithms for the input nonlinear controlled autoregressive moving average system with variable-gain nonlinearity. Int. J. Robust Nonlinear Control 31(9), 4017–4036 (2021)

    Article  MathSciNet  Google Scholar 

  34. H. Ma, J. Pan, W. Ding, Partially-coupled least squares based iterative parameter estimation for multi-variable output-error-like autoregressive moving average systems. IET Control Theory Appl. 13(18), 3040–3051 (2019)

    Article  Google Scholar 

  35. H. Ma, X. Zhang, Q.Y. Liu et al., Partially-coupled gradient-based iterative algorithms for multivariable output-error-like systems with autoregressive moving average noises. IET Control Theory Appl. 14(17), 2613–2627 (2020)

    Article  Google Scholar 

  36. A. Medjghou, M. Ghanai, K. Chafaa, Improved feedback linearization control based on PSO optimization of an extended Kalman filter. Optimal Control Appl. Methods 39(6), 1871–1886 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. T. Ozaki, Non-linear time series models for non-linear random vibrations. J. Appl. Probab. 17(1), 84–93 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Pan, X. Jiang, X.K. Wan, W. Ding, A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems. Int. J. Control Autom. Syst. 15(3), 1189–1197 (2017)

    Article  Google Scholar 

  39. J. Pan, H. Ma, X. Zhang et al., Recursive coupled projection algorithms for multivariable output-error-like systems with coloured noises. IET Signal Process. 14(7), 455–466 (2020)

    Article  Google Scholar 

  40. C. Soares, J. Gomes, STRONG: synchronous and asynchronous robust network localization, under non-Gaussian noise. Signal Process. 185, 108066 (2021)

    Article  Google Scholar 

  41. X.Q. Tang, L.J. Wang, W. Fang, Numerical Calculation (Science Press, Beijing, 2015)

    Google Scholar 

  42. T. Ter\(\ddot{a}\)virta, Specification, estimation, and evaluation of smooth transition autoregressive models. J. Am. Stat. Assoc. 89(425), 208–218 (1994)

  43. D.Q. Wang, Q.H. Fan, Y. Ma, An interactive maximum likelihood estimation method for multivariable Hammerstein systems. J. Frankl. Inst. 357(17), 12986–13005 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. D.Q. Wang, L.W. Li, Model recovery for Hammerstein systems using the auxiliary model based orthogonal matching pursuit method. Appl. Math. Model. 54, 537–550 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. D.Q. Wang, S. Zhang, A novel EM identification method for Hammerstein systems with missing output data. IEEE Trans. Ind. Inf. 16(4), 2500–2508 (2020)

    Article  Google Scholar 

  46. L.J. Wang, J. Guo, C. Xu et al., Hybrid model predictive control strategy of supercapacitor energy storage system based on double active bridge. Energies 12(11), 2134 (2019)

    Article  Google Scholar 

  47. J.W. Wang, Y. Ji, C. Zhang, Iterative parameter and order identification for fractional-order nonlinear finite impulse response systems using the key term separation. Int. J. Adapt. Control Signal Process. 35(8), 1562–1577 (2021)

    Article  MathSciNet  Google Scholar 

  48. X.G. Wang, Z.W. Wan, L. Tang et al., Electromagnetic performance analysis of an axial flux hybrid excitation motor for HEV drives. IEEE Trans. Appl. Supercond. 31(8), 5205605 (2021)

    Google Scholar 

  49. X.G. Wang, M. Zhao, Y. Zhou et al., Design and analysis for multi-disc coreless axial-flux permanent-magnet synchronous machine. IEEE Trans. Appl. Supercond. 31(8), 5203804 (2021)

    Google Scholar 

  50. Y.J. Wang, Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model. Automatica 71, 308–313 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. L. Xu, Separable recursive gradient algorithm for dynamical systems based on the impulse response signals. Int. J. Control Autom. Syst. 18(12), 3167–3177 (2020)

    Article  Google Scholar 

  52. L. Xu, Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems. Int. J. Robust Nonlinear Control 31(1), 148–165 (2021)

    Article  MathSciNet  Google Scholar 

  53. L. Xu, Decomposition strategy-based hierarchical least mean square algorithm for control systems from the impulse responses. Int. J. Syst. Sci. 52(9), 1806–1821 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Xu, F.Y. Chen, T. Hayat, Hierarchical recursive signal modeling for multi-frequency signals based on discrete measured data. Int. J. Adapt. Control Signal Process. 35(5), 676–693 (2021)

    Article  Google Scholar 

  55. L. Xu, J. Sheng, Separable multi-innovation stochastic gradient estimation algorithm for the nonlinear dynamic responses of systems. Int. J. Adapt. Control Signal Process. 34(7), 937–954 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  56. L. Xu, G.L. Song, A recursive parameter estimation algorithm for modeling signals with multi-frequencies. Circuits Syst. Signal Process. 39(8), 4198–4224 (2020)

    Article  MATH  Google Scholar 

  57. C.P. Yu, L. Ljung, A. Wills et al., Constrained subspace method for the identification of structured state-space models. IEEE Trans. Autom. Control 65(10), 4201–4214 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  58. X. Zhang, Adaptive parameter estimation for a general dynamical system with unknown states. Int. J. Robust Nonlinear Control 30(4), 1351–1372 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  59. X. Zhang, Recursive parameter estimation methods and convergence analysis for a special class of nonlinear systems. Int. J. Robust Nonlinear Control 30(4), 1373–1393 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  60. X. Zhang, State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle. IET Control Theory Appl. 12(12), 1704–1713 (2018)

    Article  MathSciNet  Google Scholar 

  61. X. Zhang, Highly computationally efficient state filter based on the delta operator. Int. J. Adapt. Control Signal Process. 33(6), 875–889 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  62. X. Zhang, State estimation for bilinear systems through minimizing the covariance matrix of the state estimation errors. Int. J. Adapt. Control Signal Process. 33(7), 1157–1173 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  63. X. Zhang, T. Hayat, Combined state and parameter estimation for a bilinear state space system with moving average noise. J. Frankl. Inst. 355(6), 3079–3103 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  64. J.P. Zhang, Y. Yang, D.Q. Wang, Dynamic analysis and chaos control of the switched-inductor boost converter with the memristive load. Int. J. Circuit Theory Appl. 49(7), 2007–2020 (2021)

    Article  Google Scholar 

  65. Y. Zhang, Z. Yan, C.C. Zhou et al., Capacity allocation of HESS in micro-grid based on ABC algorithm. Int. J. Low-Carbon Technol. 15(4), 496–505 (2020)

    Article  Google Scholar 

  66. Y.Y. Zheng, J.L. Kong, X.B. Jin, X.Y. Wang, T.L. Su, M. Zuo, CropDeep: the crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 19(5), 1058 (2019)

    Article  Google Scholar 

  67. Y.H. Zhou, Modeling nonlinear processes using the radial basis function-based state-dependent autoregressive models. IEEE Signal Process. Lett. 27, 1600–1604 (2020)

    Article  Google Scholar 

  68. Y.H. Zhou, F. Ding, Hierarchical estimation approach for RBF-AR models with regression weights based on the increasing data length. IEEE Trans. Circuits Syst. II Express Briefs (2022). https://doi.org/10.1109/TCSII.2021.3076112

    Article  Google Scholar 

  69. Y.H. Zhou, X. Zhang, Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models. Appl. Math. Comput. 414, 126663 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61973137), the Fundamental Research Funds for the Central Universities (No. JUSRP22016), the Funds of the Science and Technology on Near-Surface Detection Laboratory (No. TCGZ2019A001), and the Natural Science Foundation of Jiangsu Province (No. BK20201339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Pu.

Ethics declarations

Data Availability Statement

All data generated or analyzed during this study are included in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Y., Rong, Y., Chen, J. et al. Accelerated Identification Algorithms for Exponential Nonlinear Models: Two-Stage Method and Particle Swarm Optimization Method. Circuits Syst Signal Process 41, 2636–2652 (2022). https://doi.org/10.1007/s00034-021-01907-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01907-2

Keywords

Navigation