Skip to main content
Log in

An Uncertainly Dynamic Loss Correction and Global Sample Selection Method for Webly Supervised Fine-Grained Visual Classification

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

To distinguish the subtle differences among fine-grained categories, a large amount of well-labeled images are typically required. However, manual annotations for fine-grained categories is an extremely difficult task as it usually has a high demand for professional knowledge. To this end, we propose to directly leverage web images for fine-grained visual recognition. Nevertheless, directly utilizing web images for training fine-grained classification models tends to have poor performance due to the existence of label noise. In this work, we propose an end-to-end method by combining uncertainly dynamic loss correction and global sample selection to solve the problem of label noise. Specifically, we leverage a deep neural network to predict all samples, record the predictions of several recent epochs and calculate the uncertainly dynamic loss for global sample selection in the whole epoch. We conduct experiments on three commonly used noisy fine-grained datasets Web-Aircraft, Web-Bird and Web-Cars. The average classification accuracy is 75.40%, 78.53% and 82.19%, which has 1.20%, 2.16% and 3.43% improvements, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The datasets analyzed during the current study are available in AAAI 2020 paper “Web-supervised network with softly update-drop training for fine-grained visual classification” [35]. These datasets were derived from the following resources: https://github.com/z337-408/WSNFGVC.

Notes

  1. https://images.google.com/.

  2. https://bing.com/images/.

  3. https://www.flickr.com/.

References

  1. D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Bengio et al. A closer look at memorization in deep networks. in International Conference on Machine Learning (2017), pp. 233–242

  2. Y. Cui, Y. Song, C. Sun, A. Howard, S. Belongie, Large scale fine-grained categorization and domain-specific transfer learning. in IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 4109–4118

  3. Y. Cui, F. Zhou, Y. Lin, S. Belongie, Fine-grained categorization and dataset bootstrapping using deep metric learning with humans in the loop. in IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 1153–1162

  4. J. Fu, H. Zheng, T. Mei, Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. in IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 4438–4446

  5. B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, M. Sugiyama, Co-teaching: robust training of deep neural networks with extremely noisy labels. in The Conference on Neural Information Processing Systems (2018), pp. 8527–8537

  6. L. Jiang, Z.-Y. Zhou, T. Leung, L.-J. Li, F.-F. Li, Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels. in International Conference on Machine Learning (2017), pp. 1–20

  7. J. Krause, M. Stark, J. Deng, L. Fei-Fei, 3D object representations for fine-grained categorization. in IEEE International Conference on Computer Vision (2013), pp. 554–561

  8. T.-Y. Lin, A. RoyChowdhury, S. Maji, Bilinear CNN models for fine-grained visual recognition. in IEEE International Conference on Computer Vision (2015), pp. 1449–1457

  9. S. Maji, E. Rahtu, J. Kannala, M. Blaschko, A. Vedaldi, Fine-grained visual classification of aircraft (2013). arXiv:1306.5151

  10. E. Malach, S. Shalev-Shwartz, Decoupling “when to update” from “how to update”. in The Conference and Workshop on Neural Information Processing Systems (2017), pp. 960–970

  11. L. Niu, A. Veeraraghavan, A. Sabharwal, Webly supervised learning meets zero-shot learning: a hybrid approach for fine-grained classification. in IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 7171–7180

  12. G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, L. Qu, Making deep neural networks robust to label noise: A loss correction approach. in IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 1944–1952

  13. S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, A. Rabinovich, Training deep neural networks on noisy labels with bootstrapping. in The International Conference on Learning Representations (2015), pp. 1–9

  14. A. Shrivastava, A. Gupta, R. Girshick, Training region-based object detectors with online hard example mining. in IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 761–769

  15. M. Simon, E. Rodner, Neural activation constellations: Unsupervised part model discovery with convolutional networks. in IEEE International Conference on Computer Vision (2015), pp. 1143–1151

  16. H. Song, M. Kim, J.-G. Lee, Selfie: refurbishing unclean samples for robust deep learning. in International Conference on Machine Learning (2019), pp. 5907–5915

  17. Z. Sun, X. Hua, Y. Yao, X. Wei, G. Hu, J. Zhang, CRSSC: salvage reusable samples from noisy data for robust learning. in ACM International Conference on Multimedia (2020), pp. 92–101

  18. Z. Sun, Y. Yao, X. Wei, Y. Zhang, F. Shen, J. Wu, J. Zhang, H. Shen, Webly supervised fine-grained recognition: benchmark datasets and an approach. in IEEE International Conference on Computer Vision (2021), pp. 10602–10611

  19. C. Wah, S. Branson, P. Welinder, P. Perona, S. Belongie, The caltech-ucsd birds-200-2011 dataset. Technical Report, (CNS-TR-2011-001, California Institute of Technology, 2011)

  20. Y. Wang, W. Liu, X. Ma, J. Bailey, H. Zha, L. Song, S.-T. Xia, Iterative learning with open-set noisy labels. in IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 8688–8696

  21. Y. Wang, V. I. Morariu, L. S. Davis, Learning a discriminative filter bank within a CNN for fine-grained recognition. in IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 4148–4157

  22. X.-S. Wei, C.-W. Xie, J. Wu, C. Shen, Mask-CNN: localizing parts and selecting descriptors for fine-grained bird species categorization. Pattern Recogn. 76, 704–714 (2018)

    Article  Google Scholar 

  23. T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, Z. Zhang, The application of two-level attention models in deep convolutional neural network for fine-grained image classification. in IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 842–850

  24. Z. Xu, S. Huang, Y. Zhang, D. Tao, Webly-supervised fine-grained visual categorization via deep domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1100–1113 (2016)

    Article  Google Scholar 

  25. Y. Yao, T. Chen, G. Xie, C. Zhang, F. Shen, Q. Wu, Z Tang, J. Zhang, Non-salient region object mining for weakly supervised semantic segmentation. in IEEE Conference on Computer Vision and Pattern Recognition (2021), pp. 2623–2632

  26. Y. Yao, X. Hua, G. Gao, Z. Sun, Z. Li, J. Zhang, Bridging the web data and fine-grained visual recognition via alleviating label noise and domain mismatch. in ACM International Conference on Multimedia (2020), pp. 1735–1744

  27. Y. Yao, X. Hua, F. Shen, J. Zhang, Z. Tang, A domain robust approach for image dataset construction. in ACM international conference on Multimedia (2016), pp. 212–216

  28. Y. Yao, F. Shen, G. Xie, L. Liu, F. Zhu, J. Zhang, H. Shen, Exploiting web images for multi-output classification: from category to subcategories. IEEE Trans. Neural Netw. Learn. Syst. 31(7), 2348–2360 (2020)

    Google Scholar 

  29. Y. Yao, F. Shen, J. Zhang, L. Liu, Z. Tang, L. Shao, Extracting multiple visual senses for web learning. IEEE Trans. Multimedia 21(1), 184–196 (2019)

    Article  Google Scholar 

  30. Y. Yao, F. Shen, J. Zhang, L. Liu, Z. Tang, L. Shao, Extracting privileged information for enhancing classifier learning. IEEE Trans. Image Process. 28(1), 436–450 (2019)

    Article  MathSciNet  Google Scholar 

  31. Y. Yao, Z. Sun, C. Zhang, F. Shen, Q. Wu, J. Zhang, Z. Tang, Jo-SRC: a contrastive approach for combating noisy labels. in IEEE Conference on Computer Vision and Pattern Recognition (2021), pp. 5192–5201

  32. Y. Yao, J. Zhang, F. Shen, X. Hua, J. Xu, Z. Tang, Exploiting web images for dataset construction: A domain robust approach. IEEE Trans. Multimedia 19(8), 1771–1784 (2017)

    Article  Google Scholar 

  33. Y. Yao, J. Zhang, F. Shen, L. Liu, F. Zhu, D. Zhang, H. Shen, Towards automatic construction of diverse, high-quality image datasets. IEEE Trans. Knowl. Data Eng. 32(6), 1199–1211 (2020)

    Article  Google Scholar 

  34. C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understanding deep learning requires rethinking generalization. Commun. ACM 64(3), 107–115 (2016)

    Article  Google Scholar 

  35. C. Zhang, Y. Yao, H. Liu, G.-S. Xie, X. Shu, T. Zhou, Z. Zhang, F. Shen, Z. Tang, Web-supervised network with softly update-drop training for fine-grained visual classification. in AAAI Conference on Artificial Intelligence (2020), pp. 12781–12788

  36. C. Zhang, Y. Yao, X. Xu, J. Shao, J. Song, Z. Li, Z. Tang Extracting Useful Knowledge form Noisy Web Images via Data Purification for Fine-Grained Recognition. in ACM International Conference on Multimedia (2021)

  37. N. Zhang, J. Donahue, R. Girshick, T. Darrell, Part-based R-CNNS for fine-grained category detection. in European Conference on computer Vision (2014), pp. 834–849

  38. Y. Zhang, X.-S. Wei, J. Wu, J. Cai, J. Lu, V.-A. Nguyen, M.N. Do, Weakly supervised fine-grained categorization with part-based image representation. IEEE Trans. Image Process. 25(4), 1713–1725 (2016)

    Article  MathSciNet  Google Scholar 

  39. X. Zhu, X. Wu, Class noise vs. attribute noise: a quantitative study. Artif. Intell. Rev. 22(3), 177–210 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Ding, M., Wang, Q. et al. An Uncertainly Dynamic Loss Correction and Global Sample Selection Method for Webly Supervised Fine-Grained Visual Classification. Circuits Syst Signal Process 41, 3265–3281 (2022). https://doi.org/10.1007/s00034-021-01928-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01928-x

Keywords

Navigation