Skip to main content
Log in

A Simple Low Phase Noise Class-F LC Oscillator

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new simple resonator for the low phase noise class-F oscillators, which simplifies the design complexity of the transformer-based resonators. Moreover, compared to the transformer-based class-F oscillators, using the proposed resonator enhances the drain current waveform symmetry. As a result, the effects of flicker noise have been lowered on the proposed oscillator’s phase noise. Due to the lower tank equivalent resistance of the resonator, the proposed oscillator shows a better phase noise performance than the conventional LC class-F oscillator at all offset frequencies. The proposed class-F oscillator oscillates at the frequency of 1 GHz, and it is implemented in 0.18 \(\upmu \)m standard CMOS technology. The proposed simple resonator improves the oscillator’s phase noise by 0.32 dBc/Hz in comparison with the transformer-based class-F oscillators and by 4.88 dBc/Hz in comparison with the conventional class-F oscillators. The phase noise at 1 MHz offset frequency and figure of merit is 146.42 dBc/Hz and 189.5 dB, respectively, for the proposed class-F oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M. Babaie, R.B. Staszewski, A class-F CMOS oscillator. IEEE J. Solid State Circuits 48(12), 3120–3133 (2013)

    Article  Google Scholar 

  2. M. Babaie, R.B. Staszewski, An ultra-low phase noise class-f 2 cmos oscillator with 191 dbc/hz fom and long-term reliability. IEEE J. Solid State Circuits 50(3), 679–692 (2015). https://doi.org/10.1109/JSSC.2014.2379265

    Article  Google Scholar 

  3. L. Fanori, P. Andreani, Highly efficient class-c cmos vcos, including a comparison with class-b vcos. IEEE J. Solid State Circuits 48(7), 1730–1740 (2013). https://doi.org/10.1109/JSSC.2013.2253402

    Article  Google Scholar 

  4. M. Garampazzi, S. Dal Toso, A. Liscidini, D. Manstretta, P. Mendez, L. Romanò, R. Castello, An intuitive analysis of phase noise fundamental limits suitable for benchmarking LC oscillators. IEEE J. Solid State Circuits 49(3), 635–645 (2014)

    Article  Google Scholar 

  5. B. Ghasemi-Rostam, H. Miar-Naimi, A new low-noise dual-band vco for wlan/wimax. Circuits Syst. Signal Process. 35(11), 4153–4169 (2016)

    Article  Google Scholar 

  6. A. Hajimiri, T.H. Lee, A general theory of phase noise in electrical oscillators. IEEE J. Solid State Circuits 33(2), 179–194 (1998)

    Article  Google Scholar 

  7. E. Hegazi, H. Sjoland, A. Abidi, A filtering technique to lower lc oscillator phase noise. IEEE J. Solid State Circuits 36(12), 1921–1930 (2001). https://doi.org/10.1109/4.972142

    Article  Google Scholar 

  8. Koithyar, A., Ramesh, T.: Modeling of the submicron cmos differential ring oscillator for obtaining an equation for the output frequency. Circuits Syst. Signal Process. 1–18 (2020)

  9. D.B. Leeson, A simple model of feedback oscillator noise spectrum. Proc. IEEE 54(2), 329–330 (1966)

    Article  Google Scholar 

  10. A. Mazzanti, P. Andreani, Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE J. Solid State Circuits 43(12), 2716–2729 (2008)

    Article  Google Scholar 

  11. M. Moezzi, M. Sharif Bakhtiar, Design of LC resonator for low phase noise oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 63(2), 169–180 (2016)

    Article  MathSciNet  Google Scholar 

  12. D. Murphy, H. Darabi, H. Wu, Implicit common-mode resonance in lc oscillators. IEEE J. Solid State Circuits 52(3), 812–821 (2017). https://doi.org/10.1109/JSSC.2016.2642207

    Article  Google Scholar 

  13. M. Shahmohammadi, M. Babaie, R.B. Staszewski, A 1/f noise upconversion reduction technique for voltage-biased rf cmos oscillators. IEEE J. Solid State Circuits 51(11), 2610–2624 (2016). https://doi.org/10.1109/JSSC.2016.2602214

    Article  Google Scholar 

  14. Sheikhahmadi, S., Moezzi, M., Ghafoorifard, H.: A low phase noise class-C oscillator with improved resonator and robust start-up. IEEE Trans. Circuits Syst. II Express Briefs, 1–1 (2020)

  15. M. Siripruchyanun, W. Jaikla, Cascadable current-mode biquad filter and quadrature oscillator using do-ccciis and ota. Circuits Syst. Signal Process. 28(1), 99–110 (2009)

    Article  Google Scholar 

  16. J.H. Song, B.S. Kim, S. Nam, An adaptively biased class-c vco with a self-turn-off auxiliary class-b pair for fast and robust startup. IEEE Microw. Wirel. Compon. Lett. 26(1), 34–36 (2016). https://doi.org/10.1109/LMWC.2015.2505637

    Article  Google Scholar 

  17. A. Tsitouras, F. Plessas, Ultra-wideband, low-power, inductorless, 3.1–4.8 ghz, cmos vco. Circuits Syst. Signal Process. 30(2), 263–285 (2011)

    Article  Google Scholar 

  18. W.B. Yang, M.H. Hong, A 25 mhz crystal less clock generator with background calibration against process and temperature variation. Comput. Electr. Eng. 52, 28–37 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Moezzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, M.B., Moezzi, M. & Kashi, A. A Simple Low Phase Noise Class-F LC Oscillator. Circuits Syst Signal Process 41, 3041–3049 (2022). https://doi.org/10.1007/s00034-021-01929-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01929-w

Keywords

Navigation