Skip to main content
Log in

A New Readout Circuit with Robust Quadrature Error Compensation for MEMS Vibratory Gyroscopes

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a front-end readout circuit for the vibratory MEMS gyroscope. The overall high dynamic range performance of the readout circuits is achieved by reducing the quadrature error signal through an additional proposed feedback path in the readout circuit. It is shown that the proposed readout can tolerate the demodulator phase error. The readout has been designed and simulated in the standard \(0.18\,\upmu \mathrm{m}\) CMOS technology. Compared to the conventional structure, the simulation results show about \(19~\mathrm{dB}\) dynamic range improvement in the proposed closed-loop readout. The readout circuit achieves \(1.7~\mathrm{aF}\) capacitive resolution at \( 100~\mathrm{Hz}\) signal bandwidth and \( 95.5~\mathrm{dB}\) dynamic range. The deviation due to the 1-degree phase error of the demodulator is reduced by about \(95\%\). Moreover, the 2nd harmonic component at the output of the demodulator has been significantly reduced. The readout draws \(0.6~\mathrm{mA}\) from a \( 1.8~\mathrm{V}\) supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. L. Aaltonen, K. Halonen, Pseudo-continuous-time readout circuit for a 300\(^{\circ }\)/s capacitive 2-axis micro-gyroscope. IEEE J. Solid-State Circuits 44(12), 3609–3620 (2009)

    Article  Google Scholar 

  2. L. Aaltonen, A. Kalanti, M. Pulkkinen, M. Paavola, M. Kamarainen, K. Halonen, A 2.2 mA 4.3 mm\(^{2}\) ASIC for a 1000\(^{\circ }\)/s 2-axis capacitive micro-gyroscope. IEEE J. Solid-State Circuits 46(7), 1682–1692 (2011)

    Article  Google Scholar 

  3. F. Chen, D. Xu, W. Zhou, M. Kraft, X. Li, A discrete-time self-clocking complex electromechanical SDM gyroscope with quadrature error cancellation. Sens. Actuators A Phys. 317, 112470 (2021)

    Article  Google Scholar 

  4. R. Harrison, C. Charles, A low-power low-noise cmos for amplifier neural recording applications. IEEE J. Solid-State Circuits 38(6), 958–965 (2003)

    Article  Google Scholar 

  5. Z. Hou, Y. Kuang, F. Ou et al., A quadrature compensation method to improve the performance of the butterfly vibratory gyroscope. Sens. Actuators A Phys. 319, 112527 (2021)

    Article  Google Scholar 

  6. Z. Hu, B. Gallacher, A mode-matched force-rebalance control for a MEMS vibratory gyroscope. Sens. Actuators A Phys. 273, 1–11 (2018)

    Article  Google Scholar 

  7. T. Kenny, S. Waltman, J. Reynolds, W. Kaiser, Micromachined silicon tunnel sensor for motion detection. Appl. Phys. Lett. 58(1), 100–102 (1991)

    Article  Google Scholar 

  8. M. Marx, D. De Dorigo, S. Nessler, S. Rombach, Y. Manoli, A 2.7 \(\mu \text{ W }\) 0.06 mm\(^{2}\) background resonance frequency tuning circuit based on noise observation for a 171 mW CT- \(\Delta \Sigma \) MEMS gyroscope readout system with 09 \(^\circ \)/h bias instability. IEEE J. Solid-State Circuits 53(1), 174–186 (2018)

    Article  Google Scholar 

  9. S. Nitzan, P. Taheri-Tehrani, M. Defoort, S. Sonmezoglu, D. Horsley, Countering the effects of nonlinearity in rate-integrating gyroscopes. IEEE Sens. J. 16(10), 3556–3563 (2016)

    Article  Google Scholar 

  10. J. Raman, E. Cretu, P. Rombouts, L. Weyten, A closed-loop digitally controlled MEMS gyroscope with unconstrained sigma-delta force-feedback. IEEE Sens. J. 9(3), 297–305 (2009)

    Article  Google Scholar 

  11. M. Saukoski, L. Aaltonen, K. Halonen, Zero-rate output and quadrature compensation in vibratory MEMS gyroscopes. IEEE Sens. J. 7(12), 1639–1652 (2007)

    Article  Google Scholar 

  12. M. Serri, S. Saeedi, Ultra-low-noise TIA topology for MEMS gyroscope readout. AEU Int. J. Electron. Commun. 118, 153145 (2020)

    Article  Google Scholar 

  13. A. Sharma, CMOS Systems and Circuits for Sub-Degree Per Hour MEMS Gyroscopes (2007)

  14. A. Sharma, M. Zaman, F. Ayazi, A 104-dB dynamic range transimpedance-based CMOS ASIC for tuning fork microgyroscopes. IEEE J. Solid-State Circuits 42(8), 1790–1802 (2007)

    Article  Google Scholar 

  15. A. Sharma, M. Zaman, F. Ayazi, A sub-0.2\(^\circ \)/hr bias drift micromechanical silicon gyroscope with automatic CMOS mode-matching. IEEE J. Solid-State Circuits 44(5), 1593–1608 (2009)

    Article  Google Scholar 

  16. S. Tan, C. Liu, L. Yeh, Y. Chiu, M. Lu, K. Hsu, An integrated low-noise sensing circuit with efficient bias stabilization for CMOS MEMS capacitive accelerometers. IEEE Trans. Circuits Syst. I Regul. Pap. 58(11), 2661–2672 (2011)

    Article  MathSciNet  Google Scholar 

  17. E. Tatar, S. Alper, T. Akin, Quadrature-error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes. J. Microelectromech. Syst. 21(3), 656–667 (2012)

    Article  Google Scholar 

  18. G. Wu, G. Chua, Y. Gu, A dual-mass fully decoupled MEMS gyroscope with wide bandwidth and high linearity. Sens. Actuators A Phys. 259, 50–56 (2017)

    Article  Google Scholar 

  19. T. Yin, C. Zhang, H. Wu, Q. Wu, H. Yang, A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors. J. Semicond. 34(11), 115005 (2013)

    Article  Google Scholar 

  20. B. Zhao, Z. Hao, L. Xianxue, A force rebalance and quadrature offset control method for the sense mode of MEMS gyroscopes, in 2016 IEEE International Nanoelectronics Conference (INEC) (2016)

  21. Y. Zhao, J. Zhao, X. Wang et al., A sub-0.1\(^\circ \)/h bias-instability split-mode MEMS gyroscope with CMOS readout circuit. IEEE J. Solid-State Circuits 53(9), 2636–2650 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Moezzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zargari, S., Moezzi, M. A New Readout Circuit with Robust Quadrature Error Compensation for MEMS Vibratory Gyroscopes. Circuits Syst Signal Process 41, 3050–3065 (2022). https://doi.org/10.1007/s00034-021-01941-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01941-0

Keywords

Navigation