Skip to main content
Log in

Symmetry Breaking-Induced Dynamics for a Fourth-Order Memristor-Based Chaotic Circuit

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Nonlinear dynamical systems with symmetry have been studied extensively yielding rich and striking bifurcation patterns such as period-doubling sequence, merging crisis, crisis-induced intermittency, spontaneous symmetry breaking, and coexisting pairs of mutually symmetric attractors as well. However, very little is known unfortunately about the behavior of such systems in the presence of an explicit symmetry breaking perturbation. In this work, we evaluate the impact of an explicit symmetry break on the dynamics of a fourth-order autonomous memristive chaotic circuit. The symmetry break is obtained by assuming different electrical properties for the two pairs of diodes forming the generalized memristor. Thus, the generalized memristor exhibits an asymmetric pinched hysteresis loop which induces the asymmetry of the whole jerk circuit. We demonstrate that the symmetry break induces new and extremely complex patterns including critical phenomena, coexisting bubbles of different periodicity, multiple coexisting nonsymmetric attractors, just to name a few. These features are highlighted by using phase portraits, basins of attraction, bifurcation diagrams, and plots of largest Lyapunov exponents as main tools. A series of laboratory experimental tests are carried out to support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regular Papers 60(11), 3008–3021 (2013)

    Article  Google Scholar 

  2. B. Bao, L. Xu, N. Wang, H. Bao, Q. Xu, M. Chen, Third-order RLCM-four-elements-based chaotic circuit and its coexisting bubbles. AEU-Int. J. Electron. Commun. 94, 26–35 (2018)

    Article  Google Scholar 

  3. B. Bao, J.P. Xu, G.H. Zhou, Z.H. Ma, L. Zou, Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chin. Phys. B 20, 120502 (2011)

    Article  Google Scholar 

  4. B. Bao, J. Yu, F. Hu, Z. Liu, Generalized memristor consisting of diode bridge with first order parallel RC filter. Int. J. Bifurc. Chaos 24(11), 1450143 (2014)

    Article  MATH  Google Scholar 

  5. B. Bao, L. Zhong, J.P. Xu, Transient chaos in smooth memristor oscillator. Chin. Phys. B 19(3), 030510 (2010)

    Article  Google Scholar 

  6. B. Bao, X. Zou, Z. Liu, F. Hu, Generalized memory element and chaotic memory system. Int. J. Bifurc. Chaos 23(8), 1350135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bier, T.C. Bountis, Remerging Feigenbaum trees in dynamical systems. Phys. Lett. A 104, 239–244 (1984)

    Article  MathSciNet  Google Scholar 

  8. S.R. Bishop, A. Sofroniou, P. Shi, Symmetry-breaking in the response of the parameterically excited pendulum model. Chaos Solitons Fractals 25(2), 27–264 (2005)

    Article  MATH  Google Scholar 

  9. R.K. Budhathoki, M.P. Sah, D. Yang, H. Kim, L.O. Chua, Transient behavior of multiple memristor circuits based on flux charge relationship. Int. J. Bifurc. Chaos 24(2), 1430006 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, A gallery of chaotic oscillators based on HP memristor. Int. J. Bifurc. Chaos 23(5), 1330015 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Cao, Z. Jing, Chaotic dynamics of Josephson equation driven by constant and ac forcings. Chaos Solitons Fractals 12, 1887–1895 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Cao, J.M. Seoane, M.A.F. Sanjuan, Symmetry-breaking analysis for the general Helmholtz-Duffing oscillator. Chaos Solitons Fractals 34, 197–212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Carro-Pérez, C. Sánchez-López, H.G. González-Hernández, Experimental verification of a memristive neural network. Nonlinear Dyn. 93(4), 1823–1840 (2018)

    Article  Google Scholar 

  14. M. Chen, M. Li, Q. Yu, B. Bao, Q. Xu, J. Wang, Dynamics of self-excited and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn. 81(1–2), 215–226 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Chen, J. Yu, Q. Yu, C. Li, B. Bao, A memristive diode bridge-based canonical Chua’s circuit. Entropy 16(12), 6464–6476 (2014)

    Article  Google Scholar 

  16. L. Chua, If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 1040 (2014)

    Article  Google Scholar 

  17. L.O. Chua, Memristor-The missing circuit element. IEEE Trans. Circuits Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  18. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  19. L. Chua, G.C. Sirakoulis, A. Adamatzky, Handbook of Memristor Networks (Springer, Cham, 2019)

    Book  Google Scholar 

  20. F. Corinto, A. Ascoli, Memristive diode bridge with LCR filter. Electron. Lett. 48(14), 824–825 (2012)

    Article  Google Scholar 

  21. S.K. Dana, S. Chakraborty, G. Ananthakrishna, Homoclinic bifurcation in Chua’s circuit. Pramana J. Phys. 64(3), 44344 (2005)

    Article  Google Scholar 

  22. S.P. Dawson, Geometric mechanism for antimonotonicity in scalar maps with two critical points. Phys. Rev. E 48, 1676–1680 (1993)

    Article  MathSciNet  Google Scholar 

  23. P. Georgios, V. Ioannis, V. Nikolaos, C.S. Georgios, Boolean logic operations and computing circuits based on memristors. IEEE Trans. Circuits Syst.-II Exp. Briefs 61, 972–976 (2014)

    Article  Google Scholar 

  24. M.P. Hanias, G. Giannaris, A. Spyridakis, A. Rigas, Time series analysis in chaotic diode resonator circuit. Chaos, Solitons Fractals 27(2), 569–573 (2006)

    Article  MATH  Google Scholar 

  25. M. Henrich, T. Dahms, V. Flunkert, S.W. Teitsworth, E. Scholl, Symmetry breaking transitions in networks of nonlinear circuits elements. New J. Phys. 12, 113030 (2010)

    Article  MATH  Google Scholar 

  26. M. Hua, S. Yang, Q. Xu, M. Chen, H. Wu, B. Bao, Forward and reverse asymmetric memristor-based jerk circuits. AEU-Int. J. Electron. Commun. 123, 153294 (2020)

    Article  Google Scholar 

  27. M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Kahllert, The effects of symmetry breaking in Chua’s circuit and related piecewise-linear dynamical system. Int. J. Bifurc. Chaos 3(4), 963–979 (1993)

    Article  MathSciNet  Google Scholar 

  29. L. Kamdjeu Kengne, H.T. Kamdem Tagne, A.N. Kengnou Telem, J.R. Mboupda Pone, J. Kengne, A broken symmetry approach for the modeling and analysis of antiparallel diodes-based chaotic circuits: a case study. Analog Integr. Circuits Signal Process. 104, 205–227 (2020)

    Article  Google Scholar 

  30. L.K. Kengne, J.R.M. Pone, H.T.K. Tagne, J. Kengne, Dynamics, control and symmetry breaking aspects of a single Opamp-based autonomous LC oscillator. AEU-Int. J. Electron. Commun. 118, 153146 (2020)

    Article  Google Scholar 

  31. V.K. Tamba, H.B. Fotsin, J. Kengne, E.B.M. Ngouonkadi, P.K. Talla, Emergence of complex dynamical behaviors in improved Colpitts oscillators: antimonotonicity, coexisting attractors, and metastable chaos. Int. J. Dyn. Control 5(3), 395–406 (2017)

    Article  MathSciNet  Google Scholar 

  32. J. Kengne, A.N. Negou, Z.T. Njitacke, Antimonotonicity, chaos and multiple attractors in a novel autonomous jerk circuit. Int. J. Bifurc. Chaos 27(07), 1750100 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Kengne, A.N. Negou, D. Tchiotsop, Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn. 88(4), 2589–2608 (2017)

    Article  Google Scholar 

  34. J. Kengne, Z.N. Tabekoueng, H.B. Fotsin, Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing-Holmes type chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 36, 29–44 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. L.J. Kocarev, K.S. Halle, K. Eckert, L.O. Chua, Experimental observation of antimonotonicity in Chua’s Circuit. Int J Bifurc. Chaos 3, 1051–1055 (1993)

    Article  MATH  Google Scholar 

  36. G.A. Leonov, N.V. Kuznetsov, Hidden attractors in dynamical systems, From hidden oscillations in Hilbert Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23(01), 1330002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. G.A. Leonov, N.V. Kuznetsov, T.N. Mokaev, Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spl. Topics 224, 1421–1458 (2015)

    Article  Google Scholar 

  38. Z.H. Lin, H.X. Wang, Image encryption based on chaos with PWL memristor in Chua’s circuit In: International conference on communications, circuits and systems, pp. 964–968 (2009)

  39. B. Muthuswamy, Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20, 1335–1350 (2010)

    Article  MATH  Google Scholar 

  40. B. Muthuswamy, L.O. Chua, Simplest chaotic circuit. Int. J. Bifurc. Chaos 20(5), 1567–1580 (2010)

    Article  Google Scholar 

  41. A.H. Nayfeh, B. Balachandran, Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods (John Wiley & Sons, New York, 1995)

    Book  MATH  Google Scholar 

  42. Z.T. Njitacke, H.B. Fotsin, A.N. Negou, D. Tchiotsop, Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bridge-based Jerk circuit. Chaos Solitons Fractals 91, 180–197 (2016)

    Article  Google Scholar 

  43. V.T. Pham, S. Vaidyanathan, E. Tlelo-Cuautle, T. Kapitaniak, Memory circuit elements: complexity, complex systems, and applications. Complexity (2019). https://doi.org/10.1155/2019/4936123

    Article  Google Scholar 

  44. V.T. Pham, C. Volos, S. Jafari, S. Vaidyanathan, Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectron. Adv. Mater. Rapid Commun. 8(11–12), 1157–1163 (2014)

    Google Scholar 

  45. M.P. Sah, C. Yang, H. Kim, B. Muthuswamy, J. Jevtic, L. Chua, A generic model of memristors with parasitic components. IEEE Trans. Circuits Syst. I Regul. Pap. 62(3), 891–898 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. C. Sánchez-López, A 500 kHz frequency-shift keying modulator based on memductor. Analog Integr. Circ. Sig. Process 100(3), 527–536 (2019)

    Article  Google Scholar 

  47. C. Sánchez-López, V.H. Carbajal-Gómez, M.A. Carrasco-Aguilar, F.E. Morales-López, PID controller design based on memductor. AEU-Int. J. Electron. Commun. 101, 9–14 (2019)

    Article  Google Scholar 

  48. C. Sánchez-López, L.E. Aguila-Cuapio, A 860 kHz grounded memristor emulator circuit. AEU-Int. J. Electron. Commun. 73, 23–33 (2017)

    Article  Google Scholar 

  49. C. Sánchez-López, J. Mendoza-Lopez, M.A. Carrasco-Aguilar, C. Muñiz-Montero, A floating analog memristor emulator circuit. IEEE Trans. Circuits Syst. II Expr. Briefs 61(5), 309–313 (2014)

    Article  Google Scholar 

  50. J.Y. Seok, S.J. Song, J.H. Yoon, K.J. Yoon, T.H. Park, D.E. Kwon, H. Lim, G.H. Kim, D.S. Jeong, C.S. Hwang, A review of three-dimensional resistive switching cross-bar array memories from the integration and materials property points of view. Adv. Funct. Mater. 24, 5316–5339 (2014)

    Article  Google Scholar 

  51. A. Silva-Juárez, E. Tlelo-Cuautle, L.G. de la Fraga, R. Li, Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics. Appl. Math. Comput. 394, 125831 (2021)

    MathSciNet  MATH  Google Scholar 

  52. A. Sofroniou, S.R. Bishop, Breaking the symmetry of the parametrically excited pendulum. Chaos Solitons Fractals 28, 673–681 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. S.H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, Reading, MA, 1994)

    Google Scholar 

  54. D.W. Sukov, M.E. Bleich, J. Gauthier, J.E.S. Socolar, Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: experimental observations and theoretical analysis. Chaos 7, 560–576 (1997)

    Article  Google Scholar 

  55. K. Thamilmaran, M. Lakshmanan, Classification of bifurcations and routes to chaos in a variant of Murali–Lakshmanan–Chua circuit. Int. J. Bifurc. Chaos 12(04), 783–813 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  56. G.Y. Wang, J.L. He, F. Yuan, C.J. Peng, Dynamical behaviour of a TiO2 memristor oscillator. Chin. Phys. Lett. 30, 110506 (2013)

    Article  Google Scholar 

  57. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Wastano, Determining Lyapunov exponents from time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  58. H. Wu, J. Zhou, M. Chen, Q. Xu, B. Bao, DC-offset induced asymmetry in memristive diode-bridge-based Shinriki oscillator. Chaos Solitons Fractals 154, 111624 (2021)

    Article  MathSciNet  Google Scholar 

  59. L. Zhou, C. Wang, X. Zhang, W. Yao, Various attractors, coexisting attractors and antimonotonicity in a simple fourth-order memristive twin-T oscillator. Int. J. Bifurc. Chaos 28(04), 1850050 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially funded by Centre for Nonlinear Systems, Chennai Institute of Technology, India, vide funding number CIT/CNS/2022/RD/006. The authors would like to thank the anonymous reviewers for their comments and suggestions that helped to greatly improve the content of the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Kengne.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kengne, L.K., Ramadoss, J., Kengne, J. et al. Symmetry Breaking-Induced Dynamics for a Fourth-Order Memristor-Based Chaotic Circuit. Circuits Syst Signal Process 41, 3706–3738 (2022). https://doi.org/10.1007/s00034-022-01976-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-01976-x

Keywords

Navigation