Skip to main content
Log in

New Very-Low-Frequency Third-Order Quadrature Sinusoidal Oscillators Using CFOAs

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, through a systematic approach, four new very-low-frequency third-order quadrature sinusoidal oscillators (TOQSO), especially suitable for generating very low oscillation frequencies in the sub-audio range (< 20 Hz and further down), have been derived. Each of the four proposed TOQSOs employs three current feedback op-amps (CFOA), five resistors and three grounded capacitors, as preferred for integrated circuit (IC) implementation. All the oscillators provide independent control of the condition of oscillation (CO) and the frequency of oscillation (FO). The workability and utility of the proposed TOQSOs have been corroborated by simulation results and the hardware implementation results employing AD844-type IC CFOAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

We hereby confirm that our manuscript does not have any additional data beyond what is already contained in the manuscript. However, if any reader is interested in having the circuit files to verify any of the results, the same can be obtained from the authors on request.

Notes

  1. The references [3, 4, 6, 8, 1921, 26, 34, 4246, 6567, 71,76] deal with second order oscillators most of which are dependent on the difference term in the expression for oscillation frequency for VLF generation and hence, are not directly relevant to the class of oscillators considered in the present manuscript and hence, are not described in detail.

  2. To the best knowledge of the authors, any CFOA-based generalised automatic amplitude controlling feedback circuitry, which may be incorporated with the CFOA-based oscillators, has not been reported in the open literature yet and therefore, appears to be an interesting task which is open to investigation.

References

  1. AD535/AD534: 250 MHz, 4-quadrant voltage multiplier, 2017, file# D00883–0–12/14 (E).

  2. AD844: 60 MHz, 2000 V/µs, Monolithic Op amp with quad low noise data sheet (Rev. G). May 2017. Available online: www.linear.com. (accessed on 29 April 2019).

  3. M.T. Abuelma’atti, Identification of a class of two CFOA-based sinusoidal RC oscillators. Analog Integr. Circ. Signal Process. 71(1), 155–157 (2012)

    Article  Google Scholar 

  4. A.K. Bandopadhyay, New type of variable-frequency RC oscillator. Electron. Lett. 10(10), 180–181 (1974)

    Article  Google Scholar 

  5. M. Banu, Y. Tsividis, Floating voltage-controlled resistors in CMOS technology. Electron. Lett. 18(15), 678–679 (1982)

    Article  Google Scholar 

  6. R. Bhagat, D.R. Bhaskar, P. Kumar, Quadrature sinusoidal oscillators using CDBAs: new realizations. Circ. Syst. Signal Process. 40, 2634–2658 (2021)

    Article  Google Scholar 

  7. D.R. Bhaskar, A. Raj, P. Kumar, New resistorless third order quadrature sinusoidal oscillators. J Circuits, Syst Comput 30(11), 2150194 (2021)

    Article  Google Scholar 

  8. D.R. Bhaskar, R. Senani, New CFOA-based single-element-controlled sinusoidal oscillators. IEEE Trans. Instrum. Meas. 55(6), 2014–2021 (2006)

    Article  Google Scholar 

  9. D.R. Bhaskar, R. Senani, A.K. Singh, S.S. Gupta, Two simple analog multiplier based linear VCOs using a single current feedback op-amp. Circ. Syst. 1(1), 1–4 (2010)

    Article  Google Scholar 

  10. D.R. Bhaskar, R. Senani, A.K. Singh, Linear sinusoidal VCOs: new configurations using current-feedback-op-amps. Int. J. Electron. 97(3), 263–272 (2010)

    Article  Google Scholar 

  11. O. Channumsin, A. Jantakun, (2014) Third-order sinusoidal oscillator using VDTAs and grounded capacitors with amplitude controllability. In: 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering (JICTEE), 1–4, IEEE

  12. B. Chaturvedi, S. Maheshwari, Third-order quadrature oscillator circuit with current and voltage outputs. ISRN Electron 8, 385062 (2013)

    Google Scholar 

  13. H.P. Chen, Y.S. Hwang, Y.T. Ku, A systematic realization of third-order quadrature oscillator with controllable amplitude. AEU-Int. J. Electron. Comm. 79, 64–73 (2017)

    Article  Google Scholar 

  14. H.P. Chen, Y.S. Hwang, Y.T. Ku, A new resistor-less and electronic tunable third-order quadrature oscillator with current and voltage outputs. IETE Tech. Rev. 35(4), 426–438 (2018)

    Article  Google Scholar 

  15. H.P. Chen, Y.S. Hwang, Y.T. Ku, Voltage-mode and current-mode resistorless third-order quadrature oscillator. Appl. Sci. 7(2), 179 (2017)

    Article  Google Scholar 

  16. H.P. Chen, S.F. Wang, Y.N. Chen, Q.G. Huang, Electronically tunable third-order quadrature oscillator using VDTAs. J Circuits, Syst Comput 28(04), 1950066 (2019)

    Article  Google Scholar 

  17. H.C. Chien, Third-order sinusoidal oscillator using a single CMOS operational transresistance amplifier. J. Appl. Sci. Eng. 19(2), 187–196 (2016)

    Google Scholar 

  18. M. Dogan, E. Yuce, CFOA based a new grounded inductor simulator and its applications. Microelectron. J. 90, 297–305 (2019)

    Article  Google Scholar 

  19. S.C. Dutta Roy, V.P. Pyara, Single element controlled oscillators: A network synthetic approach. Proceedings of the IEEE 67(11), 1565–1566 (1979)

    Article  Google Scholar 

  20. A. S., Elwakil, S. Ozoguz, (2009) A low frequency oscillator structure. European Conference on Circuit Theory and Design, 588–590, IEEE

  21. A.S. Elwakil, Systematic realization of low-frequency oscillators using composite passive–active resistors. IEEE Trans. Instrum. Meas. 47(2), 584–586 (1998)

    Article  Google Scholar 

  22. M. Ghosh, S.S. Borah, A. Singh, A. Ranjan, Third order quadrature oscillator and its application using CDBA. Analog Integr. Circ. Sig. Process 107(3), 575–595 (2021)

    Article  Google Scholar 

  23. F. Golnaraghi, B. C. Kuo. (2017) Automatic control systems. McGraw-Hill Education

  24. S.S. Gupta, D.R. Bhaskar, R. Senani, A.K. Singh, Synthesis of linear VCOs: The state-variable approach. J. Circ,Syst. Comput. 20(04), 587–606 (2011)

    Article  Google Scholar 

  25. T. Hajder, Higher order loops improve phase noise of feedback oscillators. Appl. Microw. Wirel. 14(10), 24–31 (2002)

    Google Scholar 

  26. R.J. Helmer, A test-signal generator for low-frequency instrumentation. Behav. Res. Methods, Instr. Comput. 18(4), 372–376 (1986)

    Article  Google Scholar 

  27. J.W. Horng, C.L. Hou, C.M. Chang, W.Y. Chung, H.W. Tang, Y.H. Wen, Quadrature oscillators using CCIIs. Int J. Electron. 92, 21–31 (2005)

    Article  Google Scholar 

  28. J.W. Horng, Current-mode third-order quadrature oscillator using CDTAs. Active Passive. Electron. Compon. 5, 789171 (2009). https://doi.org/10.1155/2009/789171

    Article  Google Scholar 

  29. J.W. Horng, H. Lee, J.Y. Wu, Electronically tunable third-order quadrature oscillator using CDTAs. Radioengineering 19, 326–330 (2010)

    Google Scholar 

  30. J.W. Horng, Current/voltage-mode third order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors. Indian J. Pure Appl. Phys. 49, 494–498 (2011)

    Google Scholar 

  31. J. Jin, C. Wang, J. Sun, Novel third-order quadrature oscillators with grounded capacitors. Automatika 56(2), 207–216 (2015)

    Article  Google Scholar 

  32. K. Khaw-ngam, M. Kumngern, F. Khateb, Mixed-mode third-order quadrature oscillator based on single MCCFTA. Radioengineering 26(2), 522–535 (2017)

    Article  Google Scholar 

  33. K.L. Pushkar, R. Kumar, Electronically controllable third-order quadrature sinusoidal oscillator employing CMOS-OTAs. Analog Integr. Circ. Signal Process. 102, 675–681 (2020)

    Article  Google Scholar 

  34. G. Komanapalli, R. Pandey, N. Pandey, New sinusoidal oscillator configurations using operational transresistance amplifier. Int. J. Circ. Theo. Appl. 47(5), 666–685 (2019)

    Article  Google Scholar 

  35. J. Koton, N. Herencsar, K. Vrba, B. Metin, (2012) Current-and voltage-mode third-order quadrature oscillator. 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) 1203–1206

  36. M. Kumngern, S. Junnapiya, (2011) Current-mode third-order quadrature oscillator using minimum elements. International Conference on Electrical Engineering and Informatics, pp. 1–4. IEEE

  37. M. Kumngern, I. Kansiri, (2014) Single-element control third-order quadrature oscillator using OTRAs. International Conference on ICT and Knowledge Engineering, 24–27

  38. M. Kumngern, U. Torteanchai, (2012) A current-mode four-phase third-order quadrature oscillator using a MCCCFTA. International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 156–159, IEEE

  39. M. Kumngern, U. Torteanchai, (2017) Third order quadrature sinusoidal oscillator using single CDCTA. 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 440–443, IEEE

  40. M. Kumngern, and J. Chanwutitum, (2012) Single MCCCCTA-based mixed-mode third-order quadrature oscillator. 4th International Conference on Communications and Electronics (ICCE), 426–429, IEEE

  41. A. Kwawsibsam, B. Sreewirote, W. Jaikla, (2011) Third-order voltage-mode quadrature oscillator using DDCC and OTAs. In International Conference on Circuits, System and Simulation, 317–321

  42. A. Lahiri, Low-frequency quadrature sinusoidal oscillators using current differencing buffered amplifiers. Indian J. Pure Appl. Phys. 49(6), 423–428 (2011)

    Google Scholar 

  43. S. Lawanwisut M. Siripruchyanun, (2009) High output-impedance current-mode third-order quadrature oscillator based on CCCCTAs. Proceedings of the IEEE Region 10 Conference (TENCON ’09). pp. 1–4

  44. Y. Li, C. Bo, Systematic synthesis for electronic-control Colpitts oscillator using CCCIIs. Wuhan Univ. J. Nat. Sci. 24(3), 251–256 (2019)

    Article  Google Scholar 

  45. Y. Li, Systematic synthesis for electronic-control LC oscillators using second order current controlled conveyor. Revue Roumaune Des Sci. Techn.-Serie Electrotechn. ET Energetique 63(1), 71–76 (2018)

    Google Scholar 

  46. S.I. Liu, J.H. Tsay, Single-resistance-controlled sinusoidal oscillator using current-feedback amplifiers. Int. J. Electron. 80(5), 661–664 (1996)

    Article  Google Scholar 

  47. S. Maheshwari, R. Verma, Electronically tunable sinusoidal oscillator circuit. Active Passive Electron Compon (2012). https://doi.org/10.1155/2012/719376

    Article  Google Scholar 

  48. S. Maheshwari, Quadrature oscillator using grounded components with current and voltage outputs. IET Circ. Devices Syst. 3(4), 153–160 (2009)

    Article  Google Scholar 

  49. S. Maheshwari, I.A. Khan, Current controlled third order quadrature oscillator. IEE Proc. Circ. Dev. Syst. 152, 605–607 (2005)

    Article  Google Scholar 

  50. S. Maheshwari, Current-mode third-order quadrature oscillator. IET Circ. Devi. Syst. 4, 188–195 (2010)

    Article  Google Scholar 

  51. C. Malhotra, V. Ahalawat, V. V. Kumar, R. Pandey and N. Pandey, (2016) Voltage differencing buffered amplifier based quadrature oscillator. In 1st IEEE international conference on power electronics, intelligent control and energy systems (ICPEICES)

  52. J. Mohan, B. Chaturvedi, A. Kumar, Active-C realization of multifunction biquadratic filter and third-order oscillator. Radio Science 55(1), e2019RS006877 (2020)

    Article  Google Scholar 

  53. B.C. Nagar, S.K. Paul, Voltage mode third order quadrature oscillators using OTRAs. Analog Integr. Circ. Sig. Process 88(3), 517–530 (2016)

    Article  Google Scholar 

  54. N. Pandey, R. Pandey, Approach for third order quadrature oscillator realization. IET Circ. Dev. Syst. 9, 161–171 (2015)

    Article  Google Scholar 

  55. R. Pandey, N. Pandey, G. Komanapalli, R. Anurag, OTRA based voltage mode third order quadrature oscillator. ISRN Electron (2014). https://doi.org/10.1155/2014/126471

    Article  Google Scholar 

  56. K. Phanruttanachai, W. Jaikla, Third order current-mode quadrature sinusoidal oscillator with high output impedances. World Acad. Sci. Eng Technol. Int. J. Electr. Comput. Energetic Electron. Commun. Eng. 7, 472–475 (2013)

    Google Scholar 

  57. P. Phatsornsiri, P. Lamun, M. Kumngern and U. Torteanchai, (2014) Current-mode third-order quadrature oscillator using VDTAs and grounded capacitors. International Conference on Information and Communication Technology, Electronic and Electrical Engineering (JICTEE) (pp. 1–4). IEEE

  58. P. Prommee, K. Dejhan, An integrable electronic controlled sinusoidal oscillator using CMOS operational transconductance amplifier. Int. J. Electron. 89, 365–379 (2002)

    Article  Google Scholar 

  59. K.L. Pushkar, Voltage-mode third-order quadrature sinusoidal oscillator using VDBAs. Circ syst 8(12), 285–292 (2017)

    Article  Google Scholar 

  60. K.L. Pushkar, D.R. Bhaskar, Voltage-mode third-order quadrature sinusoidal oscillator using VDIBAs. Analog Integr. Circ. Signal Process. 98(1), 201–207 (2018)

    Article  Google Scholar 

  61. A. Raj, D.R. Bhaskar, P. Kumar, Two new third-order quadrature sinusoidal oscillators. IETE J. Res. (2021). https://doi.org/10.1080/03772063.2021.1874841

    Article  Google Scholar 

  62. A. Raj, P. Kumar, D.R. Bhaskar, Systematic realisation of low-frequency third order sinusoidal oscillators. Int. J. Circuit Theory Appl. 49(10), 3302–3316 (2021)

    Article  Google Scholar 

  63. A. Raj, D.R. Bhaskar, P. Kumar, Novel architecture of four quadrant analog multiplier/divider circuit employing single CFOA. Analog Integr. Circ. Sig. Process 108, 689–701 (2021)

    Article  Google Scholar 

  64. S. Roy, R.R. Pal, Electronically tunable third-order dual-mode quadrature sinusoidal oscillators employing VDCCs and all grounded components. Integration 76, 99–112 (2020)

    Article  Google Scholar 

  65. R. Senani, Novel sinusoidal oscillator employing grounded capacitors. Electron. Lett. 16(2), 62–63 (1980)

    Article  Google Scholar 

  66. R. Senani, A class of single-element-controlled sinusoidal oscillators. AEU (Germany) 36, 405–408 (1982)

    Google Scholar 

  67. R. Senani, D.R. Bhaskar, Single op-amp sinusoidal oscillators suitable for generation of very low frequencies. IEEE Trans. Instrum. Meas. 40(4), 777–779 (1991)

    Article  Google Scholar 

  68. R, Senani, D. R. Bhaskar, V. K. Singh and A. K, Singh, (2016) Sinusoidal oscillators and waveform generators using Modern electronic circuit building blocks, Springer International Publishing Switzerland

  69. R. Senani, D.R. Bhaskar, New active-R sinusoidal VCOs with linear tuning laws. Int. J. Electron. 80(1), 57–61 (2010)

    Article  Google Scholar 

  70. R. Senani, D.R. Bhaskar, M.P. Tripathi, On the realization of linear sinusoidal VCOs. Int. J. Electron. 74(5), 727–733 (1993)

    Article  Google Scholar 

  71. D.K. Srivastava, V.K. Singh, R. Senani, New very low frequency oscillator using only a single CFOA. Am J. Electr. Electron. Eng. 3(1), 1–3 (2015)

    Google Scholar 

  72. A.M. Soliman, Generation of third-order quadrature oscillator circuits using NAM expansion. J. Circ. Syst. Comp. 22(07), 1350060 (2013)

    Article  Google Scholar 

  73. R. Sotner, J. Jerabek, N. Herencsar, J. Petrzela, K. Vrba, Z. Kincl, Linearly tunable quadrature oscillator derived from LC Colpitts structure using voltage differencing transconductance amplifier and adjustable current amplifier. Analog Integr. Circ. Sig. Process 81(1), 121–136 (2014)

    Article  Google Scholar 

  74. N. Tadic, D. Gobovic, A voltage-controlled resistor in CMOS technology using bisection of the voltage range. IEEE Trans. Instrum. Meas. 50(6), 1704–1710 (2001)

    Article  Google Scholar 

  75. E. Wareechol, B. Knobnob, and M. Kumngern, (2018) FDCCII-based Third-Order quadrature sinusoidal oscillator. 41st International Conference on Telecommunications and Signal Processing (TSP), 1–4, IEEE

  76. P. Williams, Nullor representation of variable-frequency RC oscillator. Electron. Lett. 10(15), 294–294 (1974)

    Article  Google Scholar 

  77. E. Yuce, S. Minaei, H. Alpaslan, Novel CMOS technology-based linear grounded voltage controlled resistor. J. Circ. Syst. Comput. 20(03), 447–455 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the anonymous reviewers for their constructive comments and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Senani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Let us consider the characteristic equation of the third order system as given in Eq. (1):

$$ a_{3} s^{3} + a_{2} s^{2} + a_{1} s + a_{0} \, = \,0 $$
(29)

where \(a_{3} = C_{3} R_{3}\),\(a_{2} = \frac{{C_{3} R_{3} }}{{C_{2} R_{2} }}\), \(a_{1} = \frac{1}{{C_{2} R_{4} }}\) and \(a_{0} = \frac{1}{{C_{1} C_{2} R_{1} R_{4} }}\) (as in Eq. (18)).

The Routh array can be constructed from Eq. (29) as follows [23]:

s3

a3

a1

s2

a2

a0

s1

\(\frac{{a_{2} a_{1} - a_{3} a_{0} }}{{a_{2} }}\)

0

s0

a0

0

As per the Routh-Hurwitz criterion [23], the characteristic equation will have a pair of imaginary axis roots (corresponding to imaginary axis poles), if any row in the Routh array, corresponding to odd power of s, e.g., s3, s5.. contains all ‘0’s. The row just above the so-called all zero row is used to create the auxiliary equation whose solution gives the value of the imaginary axis roots. From the above array, it is noted that in the row corresponding to s1 element, there is only single nonzero entry, indicating the possibility that if this entry becomes conditionally zero, then the characeristic equation will have a pair of imaginary conjugate roots. Applying this criteria, the condition of oscillation (CO) is given as:

$$ {\text{CO}}:\frac{{a_{2} a_{1} - a_{3} a_{0} }}{{a_{2} }} = 0\,which\,implies\,\frac{{a_{1} }}{{a_{3} }} = \frac{{a_{0} }}{{a_{2} }} $$
(30)

The auxalliary equation (AE) is formed as:

$$ a_{2} s^{2} + a_{0} = 0 $$
(31)

whose solution gives the frequency of oscillation (FO) as:

$$ {\text{FO}}:\omega_{0} = \sqrt {\frac{{a_{0} }}{{a_{2} }}} \, $$
(32)

Using the cofficients of Eq. (29), CO will turn out to be \(C_{2} R_{2} = C_{1} R_{1}\) and FO as \(\sqrt {\frac{1}{{C_{2} C_{3} R_{3} R_{4} }}}\).

Alternatively, for representing a sinusoidal oscillator, Eq. (29) should have a pair of imaginary conjugate roots (responsible for constant-amplitude sustained sinusoidal oscillations) with the third pole lying on the negative real axis (to ensure stability).

Thus, Eq. (29) should be factorable as:

$$ \left( {s^{2} + \omega_{0}^{2} } \right)\left( {s + \alpha } \right) = 0 $$
(33)

yeilding roots as s =  ± jω0 and s = -α.

On comparing the cofficients of Eqs. (33) and (29), it turns out that for the roots of the Eq. (29) to be of type Eq. (33), the required condition is:

$$ \frac{{a_{1} }}{{a_{3} }} = \frac{{a_{0} }}{{a_{2} }} $$
(34)

And the value of ω0 from the quoted comparison turns out to be

$$ \omega_{0} = \sqrt {\frac{{a_{0} }}{{a_{2} }}} \,\, $$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, A., Kumar, P., Bhaskar, D.R. et al. New Very-Low-Frequency Third-Order Quadrature Sinusoidal Oscillators Using CFOAs. Circuits Syst Signal Process 41, 4293–4323 (2022). https://doi.org/10.1007/s00034-022-02006-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02006-6

Keywords

Navigation