Skip to main content
Log in

Hardware-Efficient Decimation with Spectral Shape Approximating the Nth Power of a Dirichlet Kernel

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we introduce a proper approximation of the amplitude response of a digital filter to the Nth power of a Dirichlet kernel, which allows for the construction of efficient decimation architectures. We present an explicit formula to compute how this approximation affects the worst-case aliasing attenuation in the resulting spectral shape with respect to the exact function, such that the user can identify if the proposed approach is convenient for any given specifications. Additionally, a couple of digital decimation architectures are derived from this approximation. These architectures possess the easy reconfiguration capability of the state-of-the-art Cascaded Integrator-Comb (CIC) exact solution while exhibiting a higher maximum frequency of operation and a reduced utilization of hardware resources without practically affecting power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability statement

Data generated during the current study are available from the corresponding author on reasonable request.

References

  1. A. Abinaya, M. Maheswari, A.S. Alqahtani, Heuristic analysis of CIC filter design for next-generation wireless applications. Arab. J. Sci. Eng. 46, 1257–1268 (2021). https://doi.org/10.1007/s13369-020-05016-1

    Article  Google Scholar 

  2. S. Aggarwal, Improved two-stage decimator structure using Kaiser Hamming sharpening. Circuits Syst. Signal Process. (2020). https://doi.org/10.1007/s00034-020-01592-7

    Article  Google Scholar 

  3. S. Aggarwal, Efficient design of decimation filter using linear programming and its FPGA implementation. Integration 79, 94–106 (2021)

    Article  Google Scholar 

  4. Analog Devices, AD6636 150 MSPS wideband digital downconverter, Data sheet, (2005), Accessed: Feb. 10, 2021. [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/AD6636.pdf

  5. J. O. Coleman, Chebyshev stopbands for CIC decimation and CIC-implemented array tapers in 1D and 2D. IEEE Trans Circuits Syst. I - Reg. Papers 59(12), 2956–2968 (2012). https://doi.org/10.1109/TCSI.2012.2206435

  6. D. Datta, P. Mitra, H.S. Dutta, FPGA implementation of high performance digital down converter for software defined radio. Microsyst. Technol. (2019). https://doi.org/10.1007/s00542-019-04579-w

    Article  Google Scholar 

  7. A. Dudarin, G. Molnar, M. Vucic, Optimum multiplierless compensators for sharpened cascaded-integrator-comb decimation filters. Electron. Lett. 54(16), 971–972 (2018). https://doi.org/10.1049/el.2018.5114

    Article  Google Scholar 

  8. L. Fa-Long, Digital Front-End in Wireless Communications and Broadcasting: Circuits and Signal Processing, Cambridge University Press, The Edinburgh Building, Cambridge CB2 8RU, UK (2011), ISBN 978-1-107-00213-5

  9. D. Gautam, K. Khare, B.P. Shrivastava, A novel approach for optimal design of sample rate conversion filter using linear optimization technique. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3066292

    Article  Google Scholar 

  10. K.W. Gear, A. Sanchez-Macian, J.A. Maestro, Reduced length redundancy adaptive protection for the cascaded integrator-comb interpolation filter on FPGA. Microelectron. Reliab. (2021). https://doi.org/10.1016/j.microrel.2021.114043

    Article  Google Scholar 

  11. F. Harris, Multirate Signal Processing for Communication Systems, Prentice Hall PTR, Upper Saddle River, New Jersey 07458, USA (2004), ISBN 0-13-146511-2

  12. E. Hogenauer, An economical class of digital filters for decimation and interpolation. IEEE Trans Acoust. Speech Signal Process. 29(2), 155–162 (1981). https://doi.org/10.1109/TASSP.1981.1163535

    Article  Google Scholar 

  13. Intersil, HSP43220 decimating digital filter, Data sheet, (2008), Accessed: Feb. 10, 2021. [Online]. Available: https://media.digikey.com/pdf/Data%20Sheets/Intersil%20PDFs/hsp43220.pdf

  14. Z. Jiang, A.N. Willson, Efficient digital filtering architectures using pipelining/interleaving. IEEE Trans Circuits Syst. II Analog Digital Signal Process. 44(2), 110–119 (1997). https://doi.org/10.1109/82.554438

    Article  Google Scholar 

  15. Q. Jing, Y. Li, J. Tong, Performance analysis of multi-rate signal processing digital filters on FPGA. EURASIP J. Wireless Commun. Netw. (2019). https://doi.org/10.1186/s13638-019-1349-9

    Article  Google Scholar 

  16. J. Kaiser, R. Hamming, Sharpening the response of a symmetric nonrecursive filter by multiple use of the same filter. IEEE Trans Acoust. Speech Signal Proc. (1977). https://doi.org/10.1109/TASSP.1977.1162980

    Article  MATH  Google Scholar 

  17. M. Laddomada, Generalized comb decimation filters for sigma-delta AD converters: analysis and design, IEEE Trans. Circuits Syst. I - Reg. Papers 54(5), 994–1005 (2007). https://doi.org/10.1109/TCSI.2007.895528

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Laddomada, On the polyphase decomposition for design of generalized comb decimation filters, IEEE Trans. Circuits Syst. I - Reg. Papers 55(8), 2287–2299 (2008). https://doi.org/10.1109/TCSI.2008.920136

    Article  MathSciNet  Google Scholar 

  19. M. Laddomada, Fixed-point design of generalized comb decimation filters: a statistical approach. IET Signal Process. 4(2), 158–167 (2010). https://doi.org/10.1049/iet-spr.2009.0008

    Article  MathSciNet  Google Scholar 

  20. E. Martens et al., RF-to-baseband digitization in 40 nm CMOS with RF bandpass \(\Sigma \)-\(\Delta \) modulator and polyphase decimation filter. IEEE J. Solid State Circuit. 47(4), 990–1002 (2012). https://doi.org/10.1109/JSSC.2012.2185149

    Article  Google Scholar 

  21. U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, 4th edn. (Springer, Berlin Heidelberg, 2014). 978-3-642-45308-3

  22. G. Molnar and M. Vucic, Weighted minimax design of sharpened CIC filters, IEEE 20th Internat. Conf. on Electronics, Circuits and Systems (ICECS), Dec. 8-13, Abu Dhabi, United Arab Emirates, pp. 869-872 (2013), https://doi.org/10.1109/ICECS.2013.6815552

  23. G Molnar, A. Dudarin and M. Vucic, Minimax design of multiplierless sharpened CIC filters based on interval analysis, IEEE 39th Internat. Convention on Information and Comm. Technology, Electronics and Microelectronics (MIPRO), May 30-Jun. 3, Opatija, Croatia, pp. 94-98 (2016), https://doi.org/10.1109/MIPRO.2016.7522118

  24. G. Molnar, A. Dudarin, M. Vucic, Design and multiplierless realization of maximally flat sharpened-CIC compensators. IEEE Trans Circuit. Syst. II Express Briefs 65(1), 51–55 (2018). https://doi.org/10.1109/TCSII.2017.2700081

    Article  Google Scholar 

  25. S. Pavan, R. Shcreier and G. C. Temes: Understanding delta-sigma data converters, Wiley, Hoboken, New Jersey, USA (2017), ISBN 978-1-119-25827-8

  26. Renesas, HSP50214B programmable downconverter, Data sheet, (2007), Accessed: Feb. 10, 2021. [Online]. Available: https://www.renesas.com/us/en/document/dst/hsp50214b-datasheet

  27. D. E. Troncoso-Romero, G. Dolecek and M. Laddomada, Design of multiplierless linear phase comb corrector filters for multirate applications, IEEE 3rd Latin American Symp. on Circuits and Systems (LASCAS), Feb. 29–Mar. 2, Playa del Carmen, Mexico, pp.1–4 (2012), https://doi.org/10.1109/LASCAS.2012.6180305

  28. D.E. Troncoso-Romero, M.G. Cruz-Jimenez, Efficient wide-band droop compensation for CIC filters: ad hoc and reconfigurable FIR architectures. Electron. Lett. 53(4), 228–229 (2017). https://doi.org/10.1049/el.2016.3782

    Article  Google Scholar 

  29. P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, Englewood Cliffs, New Jersey 07632, USA (1993), ISBN 0-13-605718-7

  30. L. Zhibin, G. Bo, Y. Ruotong, G. Min, Efficient sharpening CIC filter embedding fifth-order filter with coefficient optimization algorithm. Electron. Lett. 56(23), 1241–1243 (2020). https://doi.org/10.1049/el.2020.1433

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ernesto Troncoso Romero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troncoso Romero, D.E., Cruz Jiménez, M.G. & Meyer-Baese, U. Hardware-Efficient Decimation with Spectral Shape Approximating the Nth Power of a Dirichlet Kernel. Circuits Syst Signal Process 41, 4886–4905 (2022). https://doi.org/10.1007/s00034-022-02009-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02009-3

Keywords

Navigation