Skip to main content
Log in

Parameter and State Estimation of Nonlinear Fractional-Order Model Using Luenberger Observer

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper addresses both the problems of identification and state estimation of the class of nonlinear fractional systems. Using the combined state and parameter estimation approach, a new method of estimation serving to estimate simultaneously the unknown parameters, the unknown fractional orders and the inaccessible states, is proposed for the discrete fractional-order Wiener systems. The principle is that the estimation of the states uses the estimates of the parameters and the identification of the parameters utilizes the estimated states. By minimizing the defined criterion, which is non-convex and nonlinear in the parameters, the model parameters are firstly identified using the recursive least squares. Then, the fractional orders are determined with the Levenberg–Marquardt algorithm. Next, the estimates of the parameters and the orders will be used to estimate the immeasurable states based on the extended Luenberger observer. To prove the consistence of the proposed algorithm, a complete convergence analysis is developed. Finally, the effectiveness of the suggested method is illustrated in simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. A. Atitallah, S. Bedoui, K. Abderrahim, Identification of wiener time delay systems based on hierarchical gradient approach. IFAC-Papers OnLine 48(1), 403–408 (2015)

    Article  Google Scholar 

  2. A. Atitallah, S. Bedoui, K. Abderrahim, Multistage for identification of wiener time delay systems based on hierarchical gradient approach. Math. Comput. Model. Dyn. Syst. 23(2), 222–239 (2017)

    Article  MathSciNet  Google Scholar 

  3. S. Bedoui, M. Ltaief, K. Abderrahim, New results on discrete-time delay systems identification. Int. J. Autom. Comput. 9(6), 570–577 (2012)

    Article  Google Scholar 

  4. S. Bedoui, M. Ltaïef, K. Abderrahim, Hierarchical gradient based identification of discrete-time delay systems, in 52nd IEEE Conference on Decision and Control (IEEE, 2013), pp. 4565–4570

  5. G. Bibes, Modélisation de procédés de traitement des eaux et reconstruction de grandeurs physico-chimiques (Thèse de doctorat, Poitiers, 2004)

  6. Y. Boukal, Observation et commande des systèmes dynamiques d’ordre non entier. Ph.D. thesis, Université de Lorraine (2017)

  7. L. Chen, B. Basu, D. McCabe, Fractional order models for system identification of thermal dynamics of buildings. Energy Build. 133, 381–388 (2016)

    Article  Google Scholar 

  8. S. Chen, F. Liu, I. Turner, X. Hu, Numerical inversion of the fractional derivative index and surface thermal flux for an anomalous heat conduction model in a multi-layer medium. Appl. Math. Model. 59, 514–526 (2018)

    Article  MathSciNet  Google Scholar 

  9. J. Deng, Higher-order stochastic averaging for a sdof fractional viscoelastic system under bounded noise excitation. J. Frankl. Inst. 354(17), 7917–7945 (2017)

    Article  MathSciNet  Google Scholar 

  10. A. Dzielinski, D. Sierociuk, Adaptive feedback control of fractional order discrete state-space systems, in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (cimca-iawtic’06), vol. 1 (IEEE, 2005), pp. 804–809.

  11. Y. Ferdi, Some applications of fractional order calculus to design digital filters for biomedical signal processing. J. Mech. Med. Biol. 12(02), 1240008 (2012)

    Article  Google Scholar 

  12. G.C. Goodwin, K.S. Sin, Adaptive Filtering Prediction and Control (Courier Corporation, New York, 2014)

    MATH  Google Scholar 

  13. S. Hadjiloucas, R. Galvão, Fractional order and non-linear system identification algorithms for biomedical applications. J. Phys. Conf. Ser. 490, 012141 (2014)

    Article  Google Scholar 

  14. K. Hammar, T. Djamah, M. Bettayeb, Hierarchical Levenberg Marquardt algorithm for identification of fractional nonlinear system, in 2016 8th International Conference on Modelling, Identification and Control (ICMIC) (IEEE, 2016), pp. 660–664

  15. K. Hammar, T. Djamah, M. Bettayeb, Fractional Hammerstein car system identification, in 2017 6th International Conference on Systems and Control (ICSC) (IEEE, 2017), pp. 476–480

  16. C. Li, W. Deng, Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)

    MathSciNet  MATH  Google Scholar 

  17. X. Liu, X. Yang, A variational Bayesian approach for robust identification of linear parameter varying systems using mixture Laplace distributions. Neurocomputing 395, 15–23 (2020)

    Article  Google Scholar 

  18. L. Ljung, System identification, in Signal Analysis and Prediction (Springer, 1998), pp. 163–173

  19. A. Maachou, R. Malti, P. Melchior, J.L. Battaglia, A. Oustaloup, B. Hay, Application of fractional Volterra series for the identification of thermal diffusion in an Armco iron sample subject to large temperature variations. IFAC Proceedings Volumes 44(1), 5621–5626 (2011)

    Article  Google Scholar 

  20. A.K. Mani, M. Narayanan, M. Sen, Parametric identification of fractional-order nonlinear systems. Nonlinear Dyn. 93(2), 945–960 (2018)

    Article  Google Scholar 

  21. S. Marzougui, A. Atitallah, S. Bedoui, K. Abderrahim, Fractional-order polynomial wiener system identification, in 2019 International Conference on Signal, Control and Communication (SCC) (IEEE, 2019), pp. 213–218

  22. S. Marzougui, A Atitallah, S. Bedoui, K. Abderrahim, Polynomial nonlinear fractional state space system identification, in 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (IEEE, 2019), pp. 286–291

  23. S. Marzougui, A. Atitallah, S., Bedoui, K. Abderrahim, States and parameters estimation for fractional-order Hammerstein system, in 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD) (IEEE, 2020), pp. 452–457

  24. S. Marzougui, A. Atitallah, S. Bedoui, K. Abderrahim, Hierarchical fractional-order Hammerstein system identification. Int. J. Syst. Sci. 52, 1–13 (2021)

    Article  MathSciNet  Google Scholar 

  25. F. Mazenc, T.N. Dinh, S.I. Niculescu, Interval observers for discrete-time systems. Int. J. Robust Nonlinear Control 24(17), 2867–2890 (2014)

    Article  MathSciNet  Google Scholar 

  26. C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, V. Feliu-Batlle, Fractional-Order Systems and Controls: Fundamentals and Applications (Springer, London, 2010)

    Book  Google Scholar 

  27. S. Najar, M.N. Abdelkrim, M. Abdelhamid, A. Mohamed, Discrete fractional Kalman filter. IFAC Proceedings Volumes 42(19), 520–525 (2009)

    Article  Google Scholar 

  28. A. Nemati, M. Kumar, Control of microcoaxial helicopter based on a reduced-order observer. J. Aerosp. Eng. 29(3), 04015074 (2016)

    Article  Google Scholar 

  29. K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order (Elsevier, Amsterdam, 1974)

    MATH  Google Scholar 

  30. Y. Rochdi, Identification of bloc non linear systems. Ph.D. thesis, Univesité de Caen-France (2006)

  31. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives (Theory and Applications) (Gordon and Breach, Cham, 1993)

    MATH  Google Scholar 

  32. J. Schoukens, W.D. Widanage, K.R. Godfrey, R. Pintelon, Initial estimates for the dynamics of a Hammerstein system. Automatica 43(7), 1296–1301 (2007)

    Article  MathSciNet  Google Scholar 

  33. M. Schoukens, K. Tiels, Identification of block-oriented nonlinear systems starting from linear approximations: A survey. Automatica 85, 272–292 (2017)

    Article  MathSciNet  Google Scholar 

  34. T. Söderström, P. Stoica, System Identification (Prentice-Hall International, Hoboken, 1989)

    MATH  Google Scholar 

  35. M. Srivastava, S. Ansari, S. Agrawal, S. Das, A. Leung, Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dyn. 76(2), 905–914 (2014)

    Article  MathSciNet  Google Scholar 

  36. M.A. Taleb, E. Godoy, O. Bethoux, D. Irofti, Pem fuel cell fractional order modeling and identification. IFAC Proceedings 47(3), 2125–2131 (2014)

    Google Scholar 

  37. P. Van Overschee, B. De Moor, Subspace Identification for Linear Systems: Theory-Implementation-Applications (Springer, Berlin, 2012)

    MATH  Google Scholar 

  38. V. Volerra, Theory of Functionals and of Integral and Integro-differential Equations (Dover Publications, New York, 1959)

    Google Scholar 

  39. X. Wang, F. Ding, Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle. Signal Process. 117, 208–218 (2015)

    Article  Google Scholar 

  40. X. Wang, F. Ding, Joint estimation of states and parameters for an input nonlinear state-space system with colored noise using the filtering technique. Circuits Systems Signal Process. 35(2), 481–500 (2016)

    Article  Google Scholar 

  41. Z. Wang, X. Huang, G. Shi, Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62(3), 1531–1539 (2011)

    Article  MathSciNet  Google Scholar 

  42. X. Zhang, F. Ding, Hierarchical parameter and state estimation for bilinear systems. Int. J. Syst. Sci. 51(2), 275–290 (2020)

    Article  MathSciNet  Google Scholar 

  43. C. Zou, L. Zhang, X. Hu, Z. Wang, T. Wik, M. Pecht, A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors. J. Power Sources 390, 286–296 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of High Education and Scientific Research-Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumaya Marzougui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzougui, S., Bedoui, S., Atitallah, A. et al. Parameter and State Estimation of Nonlinear Fractional-Order Model Using Luenberger Observer. Circuits Syst Signal Process 41, 5366–5391 (2022). https://doi.org/10.1007/s00034-022-02031-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02031-5

Keywords

Navigation