Skip to main content
Log in

A Deep Learning Approach for the Design of Narrow Transition-Band FIR Filter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Deep neural network (DNN), being an important member of machine learning family, has been employed to serve a wide range of applications in the area of signal and image processing like pattern recognition, speech recognition, language processing, image segmentation, etc. To this aim, this paper concentrates on the design of a narrow transition-band finite impulse response (FIR) filter with the aid of back-propagation-based deep learning approach. The proposed deep learning-based approach offers a unified design framework for a variety of FIR filters. Convergence behaviour of the proposed algorithm has been proved analytically in situations when weights between adjacent layers are updated continuously. Simulation results have shown the frequency response characteristics of several FIR filters with narrow transition-band, designed with the help of proposed approach. Advantage of our design strategy has also been established in terms of magnitude response over a number of state-of-the-art techniques of recent interest. Simulation results have shown noticeable improvement in terms of transition bandwidth when compared with few existing works. Designed filter is subsequently implemented on Altera’s Cyclone IV field programmable gate array (FPGA) chip, and hardware efficiency of the suggested design has strongly been established by correlating its hardware cost with many of the state-of-the-art FIR filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Awad AM, Adaptive window method of fir filter design, in 2010 IEEE Conference on Open Systems (ICOS 2010), (2010), pp. 57–62. https://doi.org/10.1109/ICOS.2010.5720064

  2. J.W. Adams, J.L. Sullivan, Peak-constrained least-squares optimization. IEEE Trans. Signal Process. 46(2), 306–321 (1998)

    Article  Google Scholar 

  3. D.A. Alwahab, D.R. Zaghar, S. Laki, Fir filter design based neural network, in 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). (IEEE, 2018), pp. 1–4

  4. Anshul Rathi, K., Comparison of various window techniques for design fir digital filter, in 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), (2017), pp. 428–432. https://doi.org/10.1109/ICPCSI.2017.8392331

  5. K. Ben, P. Van der Smagt, An introduction to neural networks (University of Amsterdam, Amsterdam, 1996)

    Google Scholar 

  6. A. Chandra, A. Kumar, S. Roy, Design of fir filter isota with the aid of genetic algorithm. Integration 79, 107–115 (2021)

    Article  Google Scholar 

  7. W. Chen, M. Huang, X. Lou, Sparse fir filter design based on interpolation technique, in 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP). (IEEE, 2018), pp. 1–5

  8. S. Dhabu, A.P. Vinod, Design and fpga implementation of reconfigurable linear-phase digital filter with wide cutoff frequency range and narrow transition bandwidth. IEEE Trans. Circuits Syst. 63(2), 181–185 (2016)

    Article  Google Scholar 

  9. A.K. Dwivedi, S. Ghosh, N.D. Londhe, Modified artificial bee colony optimisation based fir filter design with experimental validation using field-programmable gate array. IET Signal Process. 10(8), 955–964 (2016)

    Article  Google Scholar 

  10. A.K. Dwivedi, S. Ghosh, N.D. Londhe, Review and analysis of evolutionary optimization-based techniques for fir filter design. Circuits, Syst., Signal Process. 37(10), 4409–4430 (2018)

    Article  Google Scholar 

  11. A.A. Eleti, A.R. Zerek, Fir digital filter design by using windows method with matlab, in 14th International Conference on Sciences and Techniques of Automatic Control Computer Engineering - STA’2013. (2013), pp. 282–287. https://doi.org/10.1109/STA.2013.6783144

  12. A. Ghosh, S. Roy, A. Chandra, Prefilter-equalizer based structure: A new design strategy for narrow-band fir filters, in 2018 IEEE Applied Signal Processing Conference (ASPCON). (IEEE, 2018), pp. 229–233

  13. A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000 (June 13)). Circulation Electronic Pages: http://circ.ahajournals.org/content/101/23/e215.full PMID:1085218; https://doi.org/10.1161/01.CIR.101.23.e215

  14. N. Haridas, E. Elias, Reconfigurable farrow structure-based frm filters for wireless communication systems. Circuits, Syst., Signal Process. 36(1), 315–338 (2017)

    Article  Google Scholar 

  15. N. Haridas, E. Elias, Reconfigurable farrow structure-based frm filters for wireless communication systems. Circuits, Syst., Signal Process. 36(1), 315–338 (2017). https://doi.org/10.1007/s00034-016-0309-4

    Article  Google Scholar 

  16. A. Jiang, H.K. Kwan, Y. Tang, Y. Zhu, Efficient design of sparse fir filters with optimized filter length, in 2014 IEEE International Symposium on Circuits and Systems (ISCAS). (IEEE, 2014), pp. 966–969

  17. A. Jiang, H.K. Kwan, Y. Zhu, X. Liu, N. Xu, X. Yao, Peak-error-constrained sparse fir filter design using iterative l 1 optimization, in 2016 24th European Signal Processing Conference (EUSIPCO). (IEEE, 2016), pp. 180–184

  18. W. Jiang, P. Liu, F. Wen, An improved vector quantization method using deep neural network. AEU-Int. J. Electron. Commun. 72, 178–183 (2017)

    Article  Google Scholar 

  19. Y.D. Jou, Design of real fir filters with arbitrary magnitude and phase specifications using a neural-based approach. IEEE Trans. Circuits Syst. II: Expr. Briefs 53(10), 1068–1072 (2006)

    Article  Google Scholar 

  20. Y.D. Jou, F.K. Chen, On the use of lyapunov functions for the design of complex fir digital filters, in Circuits and Systems, 2006. APCCAS 2006. IEEE Asia Pacific Conference on. (IEEE, 2006), pp. 740–743

  21. Y.D. Jou, F.K. Chen, Least-squares design of fir filters based on a compacted feedback neural network. IEEE Trans. Circuits Syst. II: Expr. Briefs 54(5), 427–431 (2007)

    Article  Google Scholar 

  22. J. Ke, X. Liu, Empirical analysis of optimal hidden neurons in neural network modeling for stock prediction, in 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, vol. 2. (2008), pp. 828–832. https://doi.org/10.1109/PACIIA.2008.363

  23. A. Konar, Computational intelligence: principles, techniques and applications (Springer Science & Business Media, New York, 2006)

    MATH  Google Scholar 

  24. W. Lee, V. Rehbock, K.L. Teo, L. Caccetta, A weighted least-square-based approach to fir filter design using the frequency-response masking technique. IEEE Signal Process. Lett. 11(7), 593–596 (2004)

    Article  Google Scholar 

  25. W.R. Lee, L. Caccetta, K.L. Teo, V. Rehbock, A weighted least squares approach to the design of fir filters synthesized using the modified frequency response masking structure. IEEE Trans. Circuits Syst. II: Expr. Briefs 53(5), 379–383 (2006)

    Article  Google Scholar 

  26. Y.C. Lim, Y. Lian, The optimum design of one-and two-dimensional fir filters using the frequency response masking technique. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process. 40(2), 88–95 (1993)

    Article  Google Scholar 

  27. W.S. Lu, T. Hinamoto, Optimal design of frequency-response-masking filters using semidefinite programming. IEEE Trans. Circuits Syst. I: Fundamental Theory Appl. 50(4), 557–568 (2003)

    Article  Google Scholar 

  28. W.S. Lu, T. Hinamoto, A unified approach to the design of interpolated and frequency-response-masking fir filters. IEEE Trans. Circuits Syst. I: Regular Papers 63(12), 2257–2266 (2016)

    Article  Google Scholar 

  29. T. Ma, Y. Wei, X. Ma, A new method for designing farrow filters based on cosine basis neural network, in Digital Signal Processing (DSP), 2016 IEEE International Conference on. (IEEE, 2016), pp. 154–158

  30. S. Mitra, S. Mitra, Digital Signal Processing: A Computer-based Approach. Connect, learn, succeed. (McGraw-Hill, 2011). URL https://books.google.co.in/books?id=QyuNQgAACAAJ

  31. G. Montavon, W. Samek, K.R. Müller, Methods for interpreting and understanding deep neural networks. Digital Signal Processing (2017)

  32. Z. Naghibi, S.A. Sadrossadat, S. Safari, Time-domain modeling of nonlinear circuits using deep recurrent neural network technique. AEU-Int. J. Electron. Commun. 35, 125 (2018)

    Google Scholar 

  33. K. Pachori, A. Mishra, Design of fir digital filters using adaline neural network, in Computational Intelligence and Communication Networks (CICN), 2012 Fourth International Conference on. (IEEE, 2012), pp. 800–803

  34. K. Rana, V. Kumar, S.S. Nair, Efficient fir filter designs using constrained genetic algorithms based optimization, in Communication Control and Intelligent Systems (CCIS), 2016 2nd International Conference on. (IEEE, 2016), pp. 131–135

  35. J. Rodrigues, K. Pai, New approach to the synthesis of sharp transition fir digital filter, in Proceedings of the IEEE International Symposium on Industrial Electronics, 2005. ISIE 2005., vol. 3. (IEEE, 2005), pp. 1171–1173

  36. S. Roy, A. Chandra, A new design strategy of sharp cut-off fir filter with powers-of-two coefficients, in 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). (2018), pp. 1–6. https://doi.org/10.1109/WiSPNET.2018.8538605

  37. S. Roy, A. Chandra, Design of narrow transition band digital filter: An analytical approach. Integration 68, 38–49 (2019). https://doi.org/10.1016/j.vlsi.2019.06.002. URL http://www.sciencedirect.com/science/article/pii/S0167926019300707

  38. S. Roy, A. Chandra, Interpolated band-pass method based narrow-band fir filter: A prospective candidate in filtered-ofdm technique for the 5g cellular network, in TENCON 2019-2019 IEEE Region 10 Conference (TENCON). (IEEE, 2019), pp. 311–315

  39. S. Roy, A. Chandra, On the order minimization of interpolated bandpass method based narrow transition band fir filter design. IEEE Trans. Circuits Syst. I: Regular Papers 66(11), 4287–4295 (2019). https://doi.org/10.1109/TCSI.2019.2928052

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Roy, A. Chandra, A study on the optimum selection of interpolation factor for the design of narrow transition band fir filter using ibm, in International Conference on Computers and Devices for Communication. (Springer, 2019), pp. 465–475

  41. S. Roy, A. Chandra, Design of narrow transition band variable bandwidth digital filter. IET Circuits, Devices Syst. 14(6), 750–757 (2020)

    Article  Google Scholar 

  42. S. Roy, A. Chandra, A survey of fir filter design techniques: low-complexity, narrow transition-band and variable bandwidth. Integration 77, 193–204 (2021)

    Article  Google Scholar 

  43. T.K. Roy, M. Morshed, Performance analysis of low pass fir filters design using kaiser, gaussian and tukey window function methods, in 2013 2nd International Conference on Advances in Electrical Engineering (ICAEE). (2013), pp. 1–6. https://doi.org/10.1109/ICAEE.2013.6750294

  44. T. Saramaki, T. Neuvo, S.K. Mitra, Design of computationally efficient interpolated fir filters. IEEE Trans. Circuits Syst. 35(1), 70–88 (1988)

    Article  Google Scholar 

  45. K.G. Sheela, S.N. Deepa, Review on methods to fix number of hidden neurons in neural networks. Math. Probl. Eng. 20, 453 (2013)

    Google Scholar 

  46. P. Vaidyanathan, Optimal design of linear phase fir digital filters with very flat passbands and equiripple stopbands. IEEE Trans. Circuits Syst. 32(9), 904–917 (1985)

    Article  Google Scholar 

  47. X. Wang, Y. He, Y. Peng, J. Xiong, A neural networks approach for designing fir notch filters, in Signal Processing, 2006 8th International Conference on, vol. 1. (IEEE, 2006)

  48. X. Wang, X. Meng, Y. He, A novel neural networks-based approach for designing fir filters, in Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on, vol. 1. (IEEE, 2006), pp. 4029–4032

  49. X.H. Wang, Y.G. He, A neural network approach to fir filter design using frequency-response masking technique. Signal Process. 88(12), 2917–2926 (2008)

    Article  Google Scholar 

  50. X.H. Wang, Y.G. He, T.Z. Li, Neural network algorithm for designing fir filters utilizing frequency-response masking technique. J. Computer Sci. Technol. 24(3), 463–471 (2009)

    Article  Google Scholar 

  51. Y. Wei, S. Huang, X. Ma, A novel approach to design low-cost two-stage frequency-response masking filters. IEEE Trans. Circuits Syst. II: Expr. Briefs 62(10), 982–986 (2015)

    Article  Google Scholar 

  52. Y. Wei, D. Liu, Improved design of frequency-response masking filters using band-edge shaping filter with non-periodical frequency response. IEEE Trans. Signal Process. 61(13), 3269–3278 (2013)

    Article  MathSciNet  Google Scholar 

  53. T. Xue, Design of fir digital filter based on improved neural network, in 2021 International Symposium on Computer Technology and Information Science (ISCTIS). (IEEE, 2021), pp. 406–410

  54. Z. Zeng, Y. Zhang, Y. Wang, Optimal design of the high order fir multi-band-stop filters, in Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on, vol. 1. (IEEE), pp. 4279–4283

  55. Z.Z. Zeng, Y. Chen, Y.N. Wang, Optimal design study of high-order fir digital filters based on neural-network algorithm, in 2006 International Conference on Machine Learning and Cybernetics. (IEEE, 2006), pp. 3157–3161

  56. A.X. Zhao, X.J. Tang, Z.H. Zhang, J.H. Liu, The optimal design method of fir filter using the improved genetic algorithm, in Industrial Electronics and Applications (ICIEA), 2014 IEEE 9th Conference on. (IEEE, 2014), pp. 452–455

  57. Z. Zhe-zhao, W. Hui, Optimal design study of three-type fir high-order digital filters based on sine basis functions neural-network algorithm, in Communications and Information Technology, 2005. ISCIT 2005. IEEE International Symposium on, vol. 2. (IEEE, 2005), pp. 921–924

Download references

Funding

This research work is funded by Science and Engineering Research Board (SERB), Department of Science and Technology, Govt. of India, vide sanction order no. ECR/2017/000440.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhabrata Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Define a Lyapunov function:

$$\begin{aligned}&V_{k}=\frac{1}{2}E_{k}^2\Rightarrow \varDelta V_{k}=\frac{1}{2}E_{k+1}^2-\frac{1}{2}E_{k}^2 \end{aligned}$$
(27)
$$\begin{aligned}&Now,~~ E_{k+1}=E_{k}+\varDelta E_{k}=E_{k}+\frac{d E_{k}}{d W_{qr}}\varDelta W_{qr} ~,~where \nonumber \\&\quad \varDelta W_{qr}=-\eta _{1}\frac{\partial \mathscr {J}}{\partial W_{qr}}=\eta _{1}\delta _{r}.H_{q};~\nonumber \\&\frac{d E_{k}}{d W_{qr}}=-H_{q}\nonumber \\&Therefore, ~E_{k+1}=E_{k}-\eta _{1}\delta _{r}(H_{q})^2~~~~\forall q \in \mathscr {Q} \end{aligned}$$
(28)

According to Eqs. (27) and (28), we can write

$$\begin{aligned} \varDelta V_{k}\!=\!\frac{1}{2}\Bigg [E_{k}-\eta _{1}\delta _{r}(H_{q})^2\Bigg ]^2-\frac{1}{2}E_{k}^2=\Bigg [-E_{k}\eta _{1}\delta _{r}(H_{q})^2+\frac{1}{2}\eta _{1}^2\delta _{r}^2(H_{q})^4\Bigg ]\nonumber \\=\delta _{r}^2(H_{q})^2\Bigg \{-\eta _{1}+\frac{\eta _{1}^2}{2}(H_{q})^2\Bigg \}~~~~\forall q \in \mathscr {Q}\qquad \end{aligned}$$
(29)

In order to let the algorithm be convergent, \(\varDelta V_{k}<0\) (i.e. \(\delta _{r}^2(H_{q})^2>0\)). Therefore, we have

$$\begin{aligned} -\eta _{1}+\frac{\eta _{1}^2}{2}(H_{q})^2<0~~~~\forall q \in \mathscr {Q} \end{aligned}$$
(30)

As, learning rate \(\eta _{1}~>0\), therefore we have

$$\begin{aligned} 0<\eta _{1}<\frac{2}{H_{q}^2}~~~~\forall q \in \mathscr {Q} \end{aligned}$$
(31)

When \(\eta _{1}\) satisfies Eq. (31), \(\varDelta V_{k}<0\), the proposed deep neural network is stable and the given algorithm is convergent to its global minimum; hence, the theorem is proved completely.

Appendix B

Define a Lyapunov function:

$$\begin{aligned}&V_{k}=\frac{1}{2}E_{k}^2\Rightarrow \varDelta V_{k}=\frac{1}{2}E_{k+1}^2-\frac{1}{2}E_{k}^2 \end{aligned}$$
(32)
$$\begin{aligned}&Now,~~ E_{k+1}=E_{k}+\varDelta E_{k}=E_{k}+\frac{d E_{k}}{d W_{pq}}\varDelta W_{pq}~,~where~\varDelta W_{pq}=-\eta _{2}\frac{\partial \mathscr {J}}{\partial W_{pq}}=\eta _{2}H_{p}~\nonumber \\&\sum _{\forall i \in \mathscr {Q}}\delta _{i}W_{ir}H_{i}(1-H_{i});\frac{d E_{k}}{d W_{pq}}=-\sum _{\forall i \in \mathscr {Q}}W_{ir}H_{i}(1-H_{i})H_{p}\nonumber \\&Therefore,~E_{k+1}=E_{k}-\eta _{2}H_{p}^2~\sum _{\forall i \in \mathscr {Q}} \delta _{i}W_{ir}^2(H_{i}(1-H_{i}))^2~~~~ \forall q \in \mathscr {Q}~,~\forall p \in \mathscr {P} \end{aligned}$$
(33)

According to Eqs. (32) and (33), we can write

$$\begin{aligned}&\varDelta V_{k}=\frac{1}{2}\Bigg [E_{k}-\eta _{2}H_{p}^2~\sum _{\forall i \in \mathscr {Q}} \delta _{i}W_{ir}^2(H_{i}(1-H_{i}))^2\Bigg ]^2-\frac{1}{2}E_{k}^2=\Bigg [-E_{k}\eta _{2}H_{p}^2~\nonumber \\&\sum _{\forall i \in \mathscr {Q}} \delta _{i}W_{ir}^2(H_{i}(1-H_{i}))^2+\frac{1}{2}\eta _{2}^2H_{p}^4~\sum _{\forall i \in \mathscr {Q}} \delta _{i}^2W_{ir}^4(H_{i}(1-H_{i}))^4\Bigg ]\nonumber \\&\quad =H_{p}^2\sum _{\forall i \in \mathscr {Q}}\delta _{i}^2W_{ir}^2(H_{i}(1-H_{i}))^2\Bigg \{-\eta _{2}+\frac{\eta _{2}^2}{2}H_{p}^2~\sum _{\forall i \in \mathscr {Q}}W_{ir}^2(H_{i}(1-H_{i}))^2\Bigg \}~~~~\nonumber \\&\qquad \qquad \qquad \forall q \in \mathscr {Q}~,~\forall p \in \mathscr {P}\nonumber \\ \end{aligned}$$
(34)

In order to let the algorithm be convergent, \(\varDelta V_{k}<0\) (i.e. \(H_{p}^2\sum _{\forall i \in \mathscr {Q}}\delta _{i}^2W_{ir}^2(H_{i}(1-H_{i}))^2>0\)). Therefore, we have

$$\begin{aligned} -\eta _{2}+\frac{\eta _{2}^2}{2}H_{p}^2~\sum _{\forall i \in \mathscr {Q}}W_{ir}^2(H_{i}(1-H_{i}))^2<0~~\forall q \in \mathscr {Q}~,~\forall p \in \mathscr {P} \end{aligned}$$
(35)

As, learning rate \(\eta _{2}~>0\), therefore we get

$$\begin{aligned} 0<\eta _{2}<\frac{2}{H_{p}^2~\sum _{\forall i \in \mathscr {Q}}W_{ir}^2(H_{i}(1-H_{i}))^2}~~\forall q \in \mathscr {Q}~,~\forall p \in \mathscr {P} \end{aligned}$$
(36)

When \(\eta _{2}\) satisfies Eq. (36), \(\varDelta V_{k}<0\), the proposed deep neural network is stable and the algorithm converges towards its global minimum.

Appendix C

Define a Lyapunov function:

$$\begin{aligned}&V_{k}=\frac{1}{2}E_{k}^2\Rightarrow \varDelta V_{k}=\frac{1}{2}E_{k+1}^2-\frac{1}{2}E_{k}^2 \end{aligned}$$
(37)
$$\begin{aligned}&Now,~~ E_{k+1}=E_{k}+\varDelta E_{k}=E_{k}+\frac{d E_{k}}{d W_{np}}\varDelta W_{np}~,~where~\varDelta W_{np}=-\eta _{3}\frac{\partial \mathscr {J}}{\partial W_{np}}=\eta _{3}H_{n}~\nonumber \\&\sum _{\forall i \in \mathscr {Q}}\delta _{i}W_{ir}H_{i}(1-H_{i})\sum _{\forall j \in \mathscr {P}}W_{jq}H_{j}(1-H_{j})~;\nonumber \\&\frac{d E_{k}}{d W_{np}}=-\sum _{\forall i \in \mathscr {Q}}~\sum _{\forall j \in \mathscr {P}}W_{jq}W_{ir}H_{i}(1-H_{i})H_{j}(1-H_{j})H_{n}\nonumber \\&Therefore,~E_{k+1}=E_{k}-\eta _{3}H_{n}^2~\sum _{\forall i \in \mathscr {Q}} \delta _{i}W_{ir}^2(H_{i}(1-H_{i}))^2\sum _{\forall j \in \mathscr {P}}W_{jq}^2(H_{j}(1-H_{j}))^2~~~~\nonumber \\&\forall q \in \mathscr {Q}~,~\forall n \in \mathscr {N} \end{aligned}$$
(38)

According to Eqs. (37) and (38), we can write

$$\begin{aligned}&\varDelta V_{k}=\frac{1}{2}\Bigg [E_{k}-\eta _{3}H_{n}^2~\sum _{\forall i \in \mathscr {Q}} \delta _{i}W_{ir}^2(H_{i}(1-H_{i}))^2\sum _{\forall j \in \mathscr {P}}W_{jq}^2(H_{j}(1-H_{j}))^2\Bigg ]^2-\frac{1}{2}E_{k}^2\nonumber \\&=\Bigg [-E_{k}\eta _{3}H_{n}^2~\sum _{\forall i \in \mathscr {Q}} \delta _{i}W_{ir}^2(H_{i}(1-H_{i}))^2\sum _{\forall j \in \mathscr {P}}W_{jq}^2(H_{j}(1-H_{j}))^2+\frac{1}{2}\eta _{3}^2H_{n}^4~\nonumber \\&\sum _{\forall i \in \mathscr {Q}} \delta _{i}^2W_{ir}^4(H_{i}(1-H_{i}))^4\sum _{\forall j \in \mathscr {P}}W_{jq}^4(H_{j}(1-H_{j}))^4\Bigg ]\nonumber \\&=H_{n}^2~\sum _{\forall i \in \mathscr {Q}}\delta _{i}^2W_{ir}^2(H_{i}(1-H_{i}))^2\sum _{\forall j \in \mathscr {P}}W_{jq}^2(H_{j}(1-H_{j}))^2\Bigg \{-\eta _{3}+\frac{\eta _{3}^2}{2}H_{n}^2~\nonumber \\&\sum _{\forall i \in \mathscr {Q}}W_{ir}^2(H_{i}(1-H_{i}))^2\sum _{\forall j \in \mathscr {P}}W_{jq}^2(H_{j}(1-H_{j}))^2\Bigg \}~~~~\forall q \in \mathscr {Q}~,~\forall n \in \mathscr {N}\nonumber \\ \end{aligned}$$
(39)

In order to let the algorithm be convergent, \(\varDelta V_{k}<0\) (i.e. \(H_{n}^2\sum _{\forall i \in \mathscr {Q}}\delta _{i}^2W_{ir}^2(H_{i}(1-H_{i}))^2\sum _{\forall j \in \mathscr {P}}W_{jq}^2(H_{j}(1-H_{j}))^2>0\)). Therefore, we get

$$\begin{aligned}&-\eta _{3}+\frac{\eta _{3}^2}{2}H_{n}^2~\sum _{\forall i \in \mathscr {Q}}W_{ir}^2(H_{i}(1-H_{i}))^2\nonumber \\&\qquad \sum _{\forall j \in \mathscr {P}}W_{jq}^2(H_{j}(1-H_{j}))^2<0 \forall q \in \mathscr {Q}~,~\forall n \in \mathscr {N} \end{aligned}$$
(40)

As, learning rate \(\eta _{3}~>0\), therefore we get

$$\begin{aligned} 0<\eta _{3}&<\frac{2}{H_{n}^2\sum _{\forall i \in \mathscr {Q}}W_{ir}^2(H_{i}(1-H_{i}))^2\sum _{\forall j \in \mathscr {P}}W_{jq}^2(H_{j}(1-H_{j}))^2}\nonumber \\&\forall q \in \mathscr {Q}~,~\forall n \in \mathscr {N} \end{aligned}$$
(41)

When \(\eta _{3}\) satisfies Eq. (41), \(\varDelta V_{k}<0\), the proposed deep neural network is stable and the algorithm is convergent to its global minimum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Chandra, A. A Deep Learning Approach for the Design of Narrow Transition-Band FIR Filter. Circuits Syst Signal Process 41, 5578–5613 (2022). https://doi.org/10.1007/s00034-022-02036-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02036-0

Keywords

Navigation