Skip to main content
Log in

Multiscale Reflection Component Based Weakly Illuminated Nighttime Image Enhancement

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, a novel multiscale reflection component-based enhancement algorithm is proposed for the nighttime input image. This model not only recovers the contrast of an image but also highlights the hidden details in input while conserving natural color in an image. The proposed method exploits the multiscale Gaussian function to evaluate the illumination layer of the image. Based on Weber Fechner’s law, an image brightness improvement scheme is proposed which adaptively controls the constraint of the enhancement function and hence, features of an image can be enhanced globally. Furthermore, the principal component analysis (PCA) based, image fusion method is designed to extract significant information from the multiple images of the same scene. The PCA can efficiently blend multiple images of same image to extract desirable features with more details. Finally, the local contrast of an image is improved by an application of the contrast-limited adaptive histogram equalization (CLAHE) technique. The experimental fallouts advocate the efficacy of the proposed algorithm over other methods. On subjective and objective analyses, it is observed that the proposed method outperforms when it is compared with several states of the arts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. S. Agrawal, R. Panda, P.K. Mishro, A. Abraham, A Novel Joint Histogram Equalization Based Image Contrast Enhancement. J King Saud Univ-Compute Inform Sci, to be Publish. (2019). https://doi.org/10.1016/j.jksuci.2019.05.010

    Article  Google Scholar 

  2. D.P. Bavirisetti, G. Xiao, J. Zhao, R. Dhuli, G. Liu, Multi-Scale Guided Image And Video Fusion: A Fast And Efficient Approach. Circuits Sys Signal Process. 38(12), 5576–5605 (2019)

    Article  Google Scholar 

  3. A.M. Chaudhry, M.M. Riaz, A. Ghafoor, A Framework for Outdoor Rgb Image Enhancement and Dehazing. IEEE Geosci. Remote Sens. Lett. 15(6), 932–936 (2018)

    Article  Google Scholar 

  4. S. Chen, R. Feng, Y. Zhang, C. Zhang, Aerial Image Matching Method Based on Hsi Hash Learning. Pattern Recogn. Lett. 117, 131–139 (2019)

    Article  Google Scholar 

  5. Z. Chen,T. Jiang,Y. Tian,Quality Assessment for Comparing Image Enhancement Algorithms. In: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition . 3003–3010 (2014)

  6. S. Dehaene, The Neural Basis of the Weber-Fechner Law: A Logarithmic Mental Number Line. Trends Cogn. Sci. 7(4), 145–147 (2003)

    Article  MathSciNet  Google Scholar 

  7. G. Deng, A Generalized Unsharp Masking Algorithm. IEEE Trans. Image Process. 20(5), 1249–1261 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. X. Dong,G. Wang,Y. Pang,W. Li,J. Wen,W. Meng,Y. Lu, Fast Efficient Algorithm for Enhancement of Low Lighting Video. In: 2011 IEEE International Conference on Multimedia and Expo. IEEE 1–6 (2011)

  9. V. Filipovic, N. Nedic, V. Stojanovic, Robust Identification of Pneumatic Servo Actuators in the Real Situations. Forsch. Ingenieurwes. 75(4), 183–196 (2011)

    Article  Google Scholar 

  10. H. Fu, B. Wu, Y. Shao, H. Zhang, Scene-Awareness Based Single Image Dehazing Technique Via Automatic Estimation of Sky Area. IEEE Access 7, 1829–1839 (2018)

    Article  Google Scholar 

  11. X. Fu, Y. Liao, D. Zeng, Y. Huang, X.P. Zhang, X. Ding, A Probabilistic Method for Image Enhancement with Simultaneous Illumination and Reflectance Estimation. IEEE Trans. Image Process. 24(12), 4965–4977 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. R.C. Gonzalez, R.E. Woods, Digital Image Processing [M]. Publish House Electron Indus 141(7), 56–60 (2002)

    Google Scholar 

  13. K. Gu, G. Zhai, W. Lin, M. Liu, The Analysis of Image Contrast: From Quality Assessment to Automatic Enhancement. IEEE Transactions Cybernetics 46(1), 284–297 (2015)

    Article  Google Scholar 

  14. X. Guo, Y. Li, H. Ling, LIME: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. K. He, J. Sun, X. Tang, Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  16. J. Jackson, S. Kun, K.O. Agyekum, A. Oluwasanmi, P. Suwansrikham, A Fast Single-Image Dehazing Algorithm Based on Dark Channel Prior and Rayleigh Scattering. IEEE Access 8, 73330–73339 (2020)

    Article  Google Scholar 

  17. S. Jayasankari, S. Domnic, Contrast Enhancement Using Inverted Gaussian Histogram Specification Technique. Circuits Systems Signal Process. 40(3), 1252–1277 (2021)

    Article  Google Scholar 

  18. D.J. Jobson, Z.U. Rahman, G.A. Woodell, A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  19. P. Kandhway, A.K. Bhandari, A Water Cycle Algorithm-Based Multilevel Thresholding System for Color Image Segmentation Using Masi Entropy. Circuits Systems Signal Process. 38(7), 3058–3106 (2019)

    Article  Google Scholar 

  20. X. Li, H. Shen, L. Zhang, H. Zhang, Q. Yuan, G. Yang, Recovering Quantitative Remote Sensing Products Contaminated By Thick Clouds And Shadows Using Multitemporal Dictionary Learning. IEEE Trans Geosci Remote Sensing. 52(11), 7086–7098 (2014)

    Article  Google Scholar 

  21. Z. Lu, B. Long, K. Li, F. Lu, Effective Guided Image Filtering for Contrast Enhancement. IEEE Signal Process. Lett. 25(10), 1585–1589 (2018)

    Article  Google Scholar 

  22. A. Nandal, H. Gamboa-Rosales, A. Dhaka, J.M. Celaya-Padilla, J.I. Galvan-Tejada, C.E. Galvan-Tejada, C. Guzman-Valdivia, Image Edge Detection Using Fractional Calculus with Feature and Contrast Enhancement. Circuits Systems Signal Process. 37(9), 3946–3972 (2018)

    Article  MATH  Google Scholar 

  23. S. Parthasarathy, P. Sankaran, An automated multi scale retinex with color restoration for image enhancement. In National Conference on Communications (NCC). IEEE 1-5 (2012)

  24. E.D. Pisano, S. Zong, B.M. Hemminger, M. DeLuca, R.E. Johnston, K. Muller, S.M. Pizer, Contrast Limited Adaptive Histogram Equalization Image Processing to Improve the Detection of Simulated Spiculations in Dense Mammograms. J. Digit. Imaging 11(4), 193 (1998)

    Article  Google Scholar 

  25. M.E. Reddy, G.R. Reddy, Recursive median and mean partitioned one-to-one gray level mapping transformations for image enhancement. Circuits Systems Signal Process. 38(7), 3227–3250 (2019)

    Article  MathSciNet  Google Scholar 

  26. X. Ren, W. Yang, W.H. Cheng, J. Liu, Lr3m: Robust Low-Light Enhancement Via Low-Rank Regularized Retinex Model. IEEE Trans. Image Process. 29, 5862–5876 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Q. Shan, J. Jia, M.S. Brown, Globally Optimized Linear Windowed Tone Mapping. IEEE Trans. Visual Comput. Graphics 16(4), 663–675 (2009)

    Article  Google Scholar 

  28. A.K. Shukla, R.K. Pandey, S. Yadav, R.B. Pachori, Generalized Fractional Filter-Based Algorithm for Image Denoising. Circuits Systems Signal Process. 39(1), 363–390 (2020)

    Article  Google Scholar 

  29. N. Singh, A.K. Bhandari, Image Contrast Enhancement with Brightness Preservation Using an Optimal Gamma and Logarithmic Approach. IET Image Proc. 14(4), 794–805 (2020)

    Article  Google Scholar 

  30. N. Singh, A.K. Bhandari, A. Singh, Variational Mode Decomposition-Based Multilevel Threshold Selection Scheme For Color Image Segmentation. Circuits, Systems, and Signal Process. 1–43, 78–82 (2020)

    Google Scholar 

  31. K. Srinivas, A.K. Bhandari, Spatial Information Computation-Based Low Contrast Image Enhancement. Circuits, Systems, and Signal Process. 1–29, 105–115 (2021)

    Google Scholar 

  32. V. Stojanovic, V. Filipovic, Adaptive Input Design for Identification of Output Error Model with Constrained Output. Circuits Systems Signal Process. 33(1), 97–113 (2014)

    Article  MathSciNet  Google Scholar 

  33. J. Sun,K. He, X.O. Tang, U.S. Patent No. 8,340,461. Washington, DC: U.S. Patent and Trademark Office. (2012)

  34. H. Tao, J. Li, Y. Chen, V. Stojanovic, H. Yang, Robust Point-To-Point Iterative Learning Control with Trial-Varying Initial Conditions. IET Control Theory Appl. 14(19), 3344–3350 (2020)

    Article  MathSciNet  Google Scholar 

  35. H. Tao, X. Li, W. Paszke, V. Stojanovic, H. Yang, Robust Pd-Type Iterative Learning Control for Discrete Systems with Multiple Time-Delays Subjected to Polytopic Uncertainty and Restricted Frequency-Domain. Multidimension. Syst. Signal Process. 32(2), 671–692 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  37. S. Wang, J. Zheng, H.M. Hu, B. Li, Naturalness Preserved Enhancement Algorithm for Non-Uniform Illumination Images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  38. S. Wang, K. Ma, H. Yeganeh, Z. Wang, W. Lin, A Patch-Structure Representation Method for Quality Assessment of Contrast Changed Images. IEEE Signal Process. Lett. 22(12), 2387–2390 (2015)

    Article  Google Scholar 

  39. J. Xie, H. Bian, Y. Wu, Y. Zhao, L. Shan, S. Hao, Semantically-Guided Low-Light Image Enhancement. Pattern Recogn. Lett. 138, 308–314 (2020)

    Article  Google Scholar 

  40. J. Xu, Y. Hou, D. Ren, L. Liu, F. Zhu, M. Yu, H. Wang, L. Shao, Star: A Structure And Texture Aware Retinex Model. IEEE Trans Image Processing. 11(29), 5022–5037 (2020)

    Article  MATH  Google Scholar 

  41. ZYing, G Li, W Gao (2017). A bio-inspired multi-exposure fusion framework for low-light image enhancement. arXiv preprint arXiv:1711.00591.

  42. SYu, S Ko, W Kang, J Paik (2015, September). Low-light image enhancement using fast adaptive binning for mobile phone cameras. In 2015 IEEE 5th International Conference on Consumer Electronics-Berlin (ICCE-Berlin) (pp. 170–171). IEEE.

  43. L. Zhang, Y. Shen, H. Li, VSI: A visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 23(10), 4270–4281 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Bhandari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Bhandari, A.K. Multiscale Reflection Component Based Weakly Illuminated Nighttime Image Enhancement. Circuits Syst Signal Process 41, 6862–6884 (2022). https://doi.org/10.1007/s00034-022-02080-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02080-w

Keywords

Navigation