Skip to main content
Log in

A Harmonic Rejecting N-Path Filter with Harmonic Gain Calibration Technique

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, an improved harmonic rejecting N-path filter with a circuit-level structure is proposed. A different set of mixing functions is introduced to conventional N-path filters. Systematic analysis shows that the mixing functions have the benefits of harmonic rejection at the radio frequency node. An 8-path circuit-level structure is proposed, and a harmonic gain calibration technique is introduced to calibrate the errors due to the process variation and mismatch. The proposed 8-path filter is designed and simulated under the 65-nm CMOS technology and achieves 17–\(29\,\hbox {dB}\) gain with a \(2\mathrm{nd}\) harmonic rejection ratio of 24–\(31\,\hbox {dB}\), \(3\mathrm{rd}\)\(6\mathrm{th}\) harmonic rejection ratio of 35–\(60\,\hbox {dB}\), a frequency range of 0.1–\(1\hbox {GHz}\), and a noise figure of 3.8–\(4.9\,\hbox {dB}.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

(All data used in this essay are collected by the authors mentioned in the essay without other sources)

References

  1. C. Andrews, A.C. Molnar, Implications of passive mixer transparency for impedance matching and noise figure in passive mixer-first receivers. IEEE Trans. Circuits Syst. I Regul. Pap. 57(12), 3092–3103 (2010). https://doi.org/10.1109/TCSI.2010.2052513

    Article  MathSciNet  Google Scholar 

  2. B. Behmanesh, S.M. Atarodi, Active eight-path filter and lna with wide channel bandwidth and center frequency tunability. IEEE Trans. Microw. Theory Tech. 65(11), 4715–4723 (2017). https://doi.org/10.1109/TMTT.2017.2698466

    Article  Google Scholar 

  3. M. Darvishi, R. van der Zee, E.A.M. Klumperink, B. Nauta, Widely tunable 4th order switched g \(_m\)-c band-pass filter based on n-path filters. IEEE J. Solid State Circuits 47(12), 3105–3119 (2012). https://doi.org/10.1109/JSSC.2012.2225542

    Article  Google Scholar 

  4. M. Darvishi, R. van der Zee, B. Nauta, Design of active n-path filters. IEEE J. Solid State Circuits 48(12), 2962–2976 (2013). https://doi.org/10.1109/JSSC.2013.2285852

    Article  Google Scholar 

  5. M. Elmi, M. Tavassoli, A. Jalali, A wideband receiver front-end using 1st and 3rd harmonics of the n-path filter response. Analog Integr. Circ. Sig. Process 94(3), 451–467 (2018)

    Article  Google Scholar 

  6. A. Ghaffari, E.A.M. Klumperink, B. Nauta, Tunable n-path notch filters for blocker suppression: modeling and verification. IEEE J. Solid State Circuits 48(6), 1370–1382 (2013). https://doi.org/10.1109/JSSC.2013.2252521

    Article  Google Scholar 

  7. A. Ghaffari, E.A.M. Klumperink, M.C.M. Soer, B. Nauta, Tunable high-q n-path band-pass filters: modeling and verification. IEEE J. Solid State Circuits 46(5), 998–1010 (2011). https://doi.org/10.1109/JSSC.2011.2117010

    Article  Google Scholar 

  8. S. Hameed, S. Pamarti, Design and analysis of a programmable receiver front end based on baseband analog-fir filtering using an lptv resistor. IEEE J. Solid State Circuits 53(6), 1592–1606 (2018). https://doi.org/10.1109/JSSC.2018.2804044

    Article  Google Scholar 

  9. S. Hameed, S. Pamarti, Design and analysis of a programmable receiver front end with time-interleaved baseband analog-fir filtering. IEEE J. Solid State Circuits 53(11), 3197–3207 (2018). https://doi.org/10.1109/JSSC.2018.2862892

    Article  Google Scholar 

  10. A. Hemati, A. Jannesari, A higher-order highly linear n-path band-pass filter. Circuits Syst. Signal Process. 40(1), 50–69 (2021)

    Article  Google Scholar 

  11. P. Karami, A. Banaeikashani, B. Behmanesh, S.M. Atarodi, An n-path filter design methodology with harmonic rejection, power reduction, foldback elimination, and spectrum shaping. IEEE Trans. Circuits Syst. I Regul. Pap. 67(12), 4494–4506 (2020). https://doi.org/10.1109/TCSI.2020.3009191

    Article  Google Scholar 

  12. Klumperink, E.A., Westerveld, H.J., Nauta, B.: N-path filters and mixer-first receivers: a review. In: 2017 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–8 (2017). https://doi.org/10.1109/CICC.2017.7993643

  13. Z. Lin, P.I. Mak, R.P. Martins, Analysis and modeling of a gain-boosted n-path switched-capacitor bandpass filter. IEEE Trans. Circuits Syst. I Regul. Pap. 61(9), 2560–2568 (2014). https://doi.org/10.1109/TCSI.2014.2312476

    Article  Google Scholar 

  14. Z. Lu, J. Jin, T. Mo, J. Zhou, Analysis of input lcr matched \(n\)-path filter. IEEE Trans. Circuits Syst. I Regul. Pap. 63(6), 795–805 (2016). https://doi.org/10.1109/TCSI.2016.2538098

    Article  MathSciNet  MATH  Google Scholar 

  15. Y.T. Lu, C.M. Hung, M.C. Lee, Harmonic rejection translational filter. Google Patents (2018)

  16. A. Mirzaei, H. Darabi, J.C. Leete, Y. Chang, Analysis and optimization of direct-conversion receivers with 25% duty-cycle current-driven passive mixers. IEEE Trans. Circuits Syst. I Regul. Pap. 57(9), 2353–2366 (2010). https://doi.org/10.1109/TCSI.2010.2043014

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Mirzaei, H. Darabi, D. Murphy, Architectural evolution of integrated m-phase high-q bandpass filters. IEEE Trans. Circuits Syst. I Regul. Pap. 59(1), 52–65 (2012). https://doi.org/10.1109/TCSI.2011.2161370

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Mohammadpour, B. Behmanesh, S.M. Atarodi, An n-path enhanced-q tunable filter with reduced harmonic fold back effects. IEEE Trans. Circuits Syst. I Regul. Pap. 60(11), 2867–2877 (2013). https://doi.org/10.1109/TCSI.2013.2256238

    Article  Google Scholar 

  19. D. Murphy, H. Darabi, H. Xu, A noise-cancelling receiver resilient to large harmonic blockers. IEEE J. Solid State Circuits 50(6), 1336–1350 (2015). https://doi.org/10.1109/JSSC.2015.2417808

    Article  Google Scholar 

  20. B. Nakhkoob, M.M. Hella, A 4.7-gb/s reconfigurable cmos imaging optical receiver utilizing adaptive spectrum balancing equalizer. IEEE Trans. Circuits Syst. I Regul. Pap. 64(1), 182–194 (2017). https://doi.org/10.1109/TCSI.2016.2614001

    Article  Google Scholar 

  21. J.W. Park, B. Razavi, Channel selection at rf using miller bandpass filters. IEEE J. Solid State Circuits 49(12), 3063–3078 (2014). https://doi.org/10.1109/JSSC.2014.2362843

    Article  Google Scholar 

  22. F. Qazi, Q.T. Duong, J. Dabrowski, Two-stage highly selective receiver front end based on impedance transformation filtering. IEEE Trans. Circuits Syst. II Express Briefs 62(5), 421–425 (2015). https://doi.org/10.1109/TCSII.2014.2385213

    Article  Google Scholar 

  23. M. Rachid, S. Pamarti, B. Daneshrad, Filtering by aliasing. IEEE Trans. Signal Process. 61(9), 2319–2327 (2013). https://doi.org/10.1109/TSP.2013.2250971

    Article  Google Scholar 

  24. M. Tavassoli, A. Jalali, Analysis of an enhanced-q n-path filter with improved even-order harmonic rejection. Circuits Syst. Signal Process. 37(3), 939–964 (2018)

    Article  MathSciNet  Google Scholar 

  25. M. Tavassoli, A. Jalali, A miller n-path bandpass filter with improved second harmonic rejection. Circuits Syst. Signal Process. 38(6), 2403–2421 (2019)

    Article  Google Scholar 

  26. Y. Xu, J. Zhu, P.R. Kinget, A blocker-tolerant rf front end with harmonic-rejecting \(n\) -path filter. IEEE J. Solid State Circuits 53(2), 327–339 (2018). https://doi.org/10.1109/JSSC.2017.2778273

    Article  Google Scholar 

  27. E. Zolkov, R. Weiss, E. Cohen, Analysis and design of n-path band-pass filters with negative base band resistance. IEEE Trans. Circuits Syst. I Regul. Pap. 67(7), 2250–2262 (2020). https://doi.org/10.1109/TCSI.2020.2973860

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Natural Science Foundation of Shanghai (20ZR1425900) and Shanghai Aerospace Advanced Technology Joint Research Fund (USCAST2020-30) for funding this research.

Funding

This study was funded by Natural Science Foundation of Shanghai (20ZR1425900) and Shanghai Aerospace Advanced Technology Joint Research Fund (USCAST2020-30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Jin.

Ethics declarations

Conflicts of interest

(No conflicts or interests with any authorities or person)

Code availability

(No software application or custom code is utilized in the research process)

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, R., Jin, J., Yang, Z. et al. A Harmonic Rejecting N-Path Filter with Harmonic Gain Calibration Technique. Circuits Syst Signal Process 41, 6672–6693 (2022). https://doi.org/10.1007/s00034-022-02118-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02118-z

Keywords

Navigation