Skip to main content
Log in

Uncertainty Principles for Wigner–Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Wigner–Ville distribution (WVD) associated with the quaternion offset linear canonical transform (QOLCT) (WVD–QOLCT) is the known furthest generalization of the WVD in quaternion algebra. WVD–QOLCT is a hybrid transform that combines the flexibility and results of both WVD and QOLCT. Recently, some properties and classical Heisenberg's uncertainty principle (UP) have been derived for the two-dimensional (2D) two-sided WVD–QOLCT. This paper complements it by presenting conjugation symmetry and nonlinearity properties. Then, to characterize the simultaneous localization of a signal and its WVD–QOLCT, we establish different UPs for the 2D WVD–QOLCT, such as logarithmic UP, Hardy's UP, and Beurling's UP. In the end, by using the nonlinearity property, the applications of the 2D WVD–QOLCT in the linear frequency modulated signal detection are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M. Bahri, On two-dimensional quaternion Wigner–Ville distribution. J. Appl. Math. 2014, 1–13 (2014). https://doi.org/10.1155/2014/139471

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Bahri, Quaternion linear canonical transform application. Global J. Pure Appl. Math. 11, 19–24 (2015)

    Google Scholar 

  3. M. Bahri, Product theorem for quaternion Fourier transform. Int. J. Math. Anal. 8, 81–87 (2014). https://doi.org/10.12988/ijma.2014.311290

    Article  MathSciNet  Google Scholar 

  4. M. Bahri, R. Ashino, Duality property of two-sided quaternion Fourier transform, in International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), Chengdu (2018). https://doi.org/10.1109/ICWAPR.2018.8521310

  5. M. Bahri, R. Ashino, Logarithmic uncertainty principle for quaternion linear canonical transform, in Proceeding of 2016 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR, 2016) (2016), pp. 140–145. https://doi.org/10.1109/ICWAPR.2016.7731634

  6. M. Bahri, E. Hitzer, A. Hayashi, R. Ashino, An uncertainty principle for quaternion Fourier transform. Comput. Math. Appl. 56, 2398–2410 (2008). https://doi.org/10.1016/j.camwa.2008.05.032

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bahri, M.S.A. Fatimah, Relation between quaternion Fourier transform and quaternion Wigner–Ville distribution associated with linear canonical transform. J. Appl. Math. 2017, 1–10 (2017). https://doi.org/10.1155/2017/3247364

    Article  MathSciNet  MATH  Google Scholar 

  8. R.F. Bai, B.Z. Li, Q.Y. Cheng, Wigner–Ville distribution associated with the linear canonical transform. J. Appl. Math. 2012, 1–14 (2012). https://doi.org/10.1155/2012/740161

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Banouh, A. Ben Mabrouk, M. Kesri, Clifford wavelet transform and the uncertainty principle. Adv. Appl. Clifford Algebr. 29, 1–23 (2019). https://doi.org/10.1007/s00006-019-1026-4

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Bas, N. le Bihan, J.M. Chassery, Color image watermarking using quaternion Fourier transform, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Process (ICASSP'03), Hong-Kong (2003), pp. 521–524. https://doi.org/10.1109/ICASSP.2003.1199526

  11. E. Bayro-Corrochano, N. Trujillo, M. Naranjo, Quaternion Fourier descriptors for the preprocessing and recognition of spoken words using images of spatiotemporal representations. J. Math. Imaging Vis. 28, 179–190 (2007). https://doi.org/10.1007/s10851-007-0004-y

    Article  MathSciNet  Google Scholar 

  12. M.Y. Bhat, A.H. Dar, Convolution and correlation theorems for Wigner–Ville distribution associated with the quaternion offset linear canonical transform. Signal Image Video Process. 16, 1235–1242 (2022). https://doi.org/10.1007/s11760-021-02074-2

    Article  Google Scholar 

  13. M.Y. Bhat, A.H. Dar, The algebra of 2D Gabor quaternionic offset linear canonical transform and uncertainty principles. J. Anal. (2021). https://doi.org/10.1007/s41478-021-00364-z

    Article  MATH  Google Scholar 

  14. R.N. Bracewell, The Fourier Transform and Its Applications, 3rd edn. (McGraw-Hill Book Co., New York, 1986)

    MATH  Google Scholar 

  15. K. Brahim, E. Tefjeni, Uncertainty principle for the two sided quaternion windowed Fourier transform. J. Pseudo-Differ. Oper. Appl. 11, 159–185 (2020). https://doi.org/10.1007/s11868-019-00283-5

    Article  MathSciNet  MATH  Google Scholar 

  16. B.J. Chen, G. Coatrieux, G. Chen, X.M. Sun, J.L. Coatrieux, H.Z. Shu, Full 4-D quaternion discrete Fourier transform based watermarking for color images. Digit. Signal Process. 28, 106–119 (2014). https://doi.org/10.1016/j.dsp.2014.02.010

    Article  Google Scholar 

  17. L.P. Chen, K.I. Kou, M.S. Liu, Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform. J. Math. Anal. Appl. 423, 681–700 (2015). https://doi.org/10.1016/j.jmaa.2014.10.003

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Cheng, K.I. Kou, Generalized sampling expansions associated with quaternion Fourier transform. Math. Methods Appl. Sci. 41, 4021–4032 (2018). https://doi.org/10.1002/mma.4423

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. El Haoui, Erratum to: The Wigner–Ville distribution associated with the quaternion offset linear canonical transform. Anal. Math. 48, 279–282 (2022). https://doi.org/10.1007/s10476-021-0107-5

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. El Haoui, S. Fahlaoui, Beurling’s theorem for the quaternion Fourier transform. J. Pseudo-Differ. Oper. (2019). https://doi.org/10.1007/s11868-019-00281-7

    Article  MATH  Google Scholar 

  21. Y. El Haoui, S. Fahlaoui, Miyachi’s theorem for the quaternion Fourier transform. Circuits Syst. Signal Process. 39, 1–14 (2019). https://doi.org/10.1007/s00034-019-01243-6

    Article  Google Scholar 

  22. Y. El Haoui, S. Fahlaoui, The uncertainty principle for the two-sided quaternion Fourier transform. Mediterr. J. Math. 14, 221 (2017). https://doi.org/10.1007/s00009-017-1024-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. El Haoui, E. Hitzer, Generalized uncertainty principles associated with the quaternionic offset linear canonical transform. Complex Var. Elliptic Equ. (2021). https://doi.org/10.1080/17476933.2021.1916919

    Article  MATH  Google Scholar 

  24. M. El Kassimi, Y. El Haoui, S. Fahlaoui, The Wigner–Ville distribution associated with the quaternion offset linear canonical transform. Anal. Math. 45, 787–802 (2019). https://doi.org/10.1007/s10476-019-0007-0

    Article  MathSciNet  MATH  Google Scholar 

  25. T.A. Ell, Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems, in Proceeding of the 32nd IEEE Conference on Decision and Control (1993), pp. 1830–1841. https://doi.org/10.1109/CDC.1993.325510

  26. X.L. Fan, K.I. Kou, M.S. Liu, Quaternion Wigner–Ville distribution associated with the linear canonical transforms. Signal Process. 130, 129–141 (2017). https://doi.org/10.1016/j.sigpro.2016.06.018

    Article  Google Scholar 

  27. P. Fletcher, S.J. Sangwine, The development of the quaternion wavelet transform. Signal Process. 136, 2–15 (2017). https://doi.org/10.1016/j.sigpro.2016.12.025

    Article  Google Scholar 

  28. Y.X. Fu, Z. Xiong, Uncertainty principle for a kind of quaternionic linear canonical transform. Adv. Appl. Math. 3, 134–139 (2014). https://doi.org/10.12677/aam.2014.33020

    Article  Google Scholar 

  29. W.B. Gao, B.Z. Li, Quaternion windowed linear canonical transform of two-dimensional quaternionic signals. Adv. Appl. Clifford Algebr. 30, 1–18 (2020). https://doi.org/10.1007/s00006-020-1042-4

    Article  MathSciNet  Google Scholar 

  30. S.L. Hahn, K.M. Snopek, Wigner distributions and ambiguity functions of 2-D quaternionic and monogenic signals. IEEE Trans. Signal Process. 53(8), 3111–3128 (2005). https://doi.org/10.1109/TSP.2005.851134

    Article  MathSciNet  MATH  Google Scholar 

  31. W.R. Hamilton, Elements of Quaternions (Longman, London, 1864)

    Google Scholar 

  32. E. Hitzer, Directional uncertainty principle for quaternion Fourier transform. Adv. Appl. Clifford Algebr. 20, 271–284 (2010). https://doi.org/10.1007/s00006-009-0175-2

    Article  MathSciNet  MATH  Google Scholar 

  33. K.I. Kou, J. Ou, J. Morais, On uncertainty principle for quaternionic linear canonical transform. Abstr. Appl. Anal. (2013). https://doi.org/10.1155/2013/725952

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Lian, Uncertainty principle for the quaternion Fourier transform. J. Math. Anal. Appl. 467, 1258–1269 (2018). https://doi.org/10.1016/j.jmaa.2018.08.002

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Ouyang, G. Coatrieux, H.Z. Shu, Robust hashing for image authentication using quaternion discrete Fourier transform and log-polar transform. Digit. Signal Process. 41, 98–109 (2015). https://doi.org/10.1016/j.dsp.2015.03.006

    Article  Google Scholar 

  36. S.J. Sangwine, T.A. Ell, Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 16, 137–140 (2001). https://doi.org/10.1109/ICIP.2001.958972

    Article  MathSciNet  MATH  Google Scholar 

  37. F.A. Shah, A.A. Teali, A.Y. Tantary, Linear canonical wavelet transform in quaternion domains. Adv. Appl. Clifford Algebras 31, 42 (2021). https://doi.org/10.1007/s00006-021-01142-7

    Article  MathSciNet  MATH  Google Scholar 

  38. Y.E. Song, X.Y. Zhang, C.H. Shang, H.X. Bu, X.Y. Wang, Wigner–Ville distribution based on the linear canonical transform and its applications for QFM signal parameters estimation. J. Appl. Math. 2014, 1–8 (2014). https://doi.org/10.1155/2014/516457

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Urynbassarova, B.Z. Li, R. Tao, Convolution and correlation theorems for Wigner–Ville distribution associated with the offset linear canonical transform. Optik 157, 455–466 (2017). https://doi.org/10.1016/j.ijleo.2017.08.099

    Article  Google Scholar 

  40. D. Urynbassarova, B.Z. Li, R. Tao, The Wigner–Ville distribution in the linear canonical transform domain. IAENG Int. J. Appl. Math. 46, 559–563 (2016)

    Google Scholar 

  41. D. Urynbassarova, A.A. Teali, F. Zhang, Convolution, correlation, and uncertain principles for the quaternion offset linear canonical transform (2022). (In press)

  42. D. Urynbassarova, A.A. Teali, F. Zhang, Discrete quaternion linear canonical transform. Digit. Signal Process. 122, 103361 (2022). https://doi.org/10.1016/j.dsp.2021.103361

    Article  Google Scholar 

  43. D. Urynbassarova, A. Urynbassarova, E. Al-Hussam, The Wigner–Ville distribution based on the offset linear canonical transform domain, in 2nd International Conference on Modeling, Simulation and Applied Mathematics (MSAM2017), Advances in Intelligent Systems Research, vol. 122 (2017), pp. 139–142. https://doi.org/10.2991/msam-17.2017.31

  44. G.L. Xu, X.T. Wang, X.G. Xu, Fractional quaternion Fourier transform, convolution and correlation. Signal Process. 88, 2511–2517 (2008). https://doi.org/10.1016/j.sigpro.2008.04.012

    Article  MATH  Google Scholar 

  45. Y. Yang, K.I. Kou, Uncertainty principles for hypercomplex signals in the linear canonical transform domains. Signal Process. 95, 67–75 (2014). https://doi.org/10.1016/j.sigpro.2013.08.008

    Article  Google Scholar 

  46. Y. Zhang, G.L. Xu, The properties and fast algorithm of quaternion linear canonical transform. J. Signal Inf. Process. 9, 202–216 (2018). https://doi.org/10.4236/jsip.2018.93012

    Article  Google Scholar 

  47. Y.N. Zhang, B.Z. Li, Novel uncertainty principles for two-sided quaternion linear canonical transform. Adv. Appl. Clifford Algebr. 28, 1–14 (2018). https://doi.org/10.1007/s00006-018-0828-0

    Article  MathSciNet  MATH  Google Scholar 

  48. Z.C. Zhang, Unified Wigner–Ville distribution and ambiguity function in the linear canonical transform domain. Signal Process. 114, 45–60 (2015). https://doi.org/10.1016/j.sigpro.2015.02.016

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their insightful remarks that helped to the improved version of this paper.

Funding

This work was partially supported by Beijing Municipal Natural Science Foundation under Grant L191004 and National Natural Science Foundation of China under Grant 62171025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didar Urynbassarova.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urynbassarova, D., El Haoui, Y. & Zhang, F. Uncertainty Principles for Wigner–Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform. Circuits Syst Signal Process 42, 385–404 (2023). https://doi.org/10.1007/s00034-022-02127-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02127-y

Keywords

Navigation