Abstract
This paper presents a sub-microwatt sub-bandgap voltage and current reference that can generate proportional-to-absolute-temperature (PTAT) and complementary-to-absolute-temperature (CTAT) currents concurrently. The voltage reference is derived from the process-insensitive silicon bandgap voltage of a bipolar junction transistor, whereas the current reference is made by combining PTAT and CTAT currents. Line regulation is improved by incorporating cascode devices without an operational amplifier (opamp). Fabricated in a standard 0.18-µm CMOS process, the proposed bandgap reference occupies an active area of 0.4 mm2. The current and voltage reference (\({I}_{\mathrm{REF}}\) and \({V}_{\mathrm{REF}}\)) are measured as 170 mV and 21 nA, respectively, while the start-up settling response is measured as 20 ms at room temperature. The average temperature coefficient of \({I}_{\mathrm{REF}}\) and \({V}_{\mathrm{REF}}\) is 79.8 ppm/°C and 87.93 ppm/°C across the temperature range from − 40 to 120 °C, respectively. The power consumption is 134 nW at the minimum supply voltage of 1.2 V. The power supply ripple rejection of \({V}_{\mathrm{REF}}\) is measured as − 10 dB at 100 kHz without any filtering capacitor, when the 1.6 V input line voltage is distorted by a 300-mVp-p ripple. The measured line sensitivity of the voltage and current reference is 0.142%/V and 0.757%/V, respectively.











Similar content being viewed by others
Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
H. Aminzadeh, All–MOS self-powered subthreshold voltage reference with enhanced line regulation. AEU-Int. J. Electron. Commun. 122, 153245 (2020)
H. Aminzadeh, Self-biased nano-power four-transistor current and voltage reference with a single resistor. Electron. Lett. 56, 282–284 (2020)
H. Aminzadeh, Subthreshold reference circuit with curvature compensation based on the channel length modulation of MOS devices. Int. J. Circuit Theory Appl. 50, 1082–1100 (2021)
A.-J. Annema, P. Veldhorst, G. Doornbos, and B. Nauta, A sub-1V bandgap voltage reference in 32nm FinFET technology. in 2009 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, pp. 332–333 (2009)
H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi et al., A CMOS bandgap reference circuit with sub-1-V operation. IEEE J. Solid-State Circuits 34, 670–674 (1999)
T.L. Brooks and A.L. Westwick, A low-power differential CMOS bandgap reference. in Proceedings of IEEE International Solid-State Circuits Conference-ISSCC'94, pp. 248–249 (1994).
M. Conti, P. Crippa, S. Orcioni, M. Pesare, C. Turchetti, L. Vendrame et al., An integrated CAD methodology for yield enhancement of VLSI CMOS circuits including statistical device variations. Analog Integr. Circ. Sig. Process 37, 85–102 (2003)
M. Conti, P. Crippa, S. Orcioni, C. Turchetti, Parametric yield formulation of MOS IC’s affected by mismatch effect. IEEE Trans. Comput. Aid. Des. Integr. Circuits Syst. 18, 582–596 (1999)
M. Conti, P. Crippa, S. Orcioni, C. Turchetti, Layout-based statistical modeling for the prediction of the matching properties of MOS transistors. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49, 680–685 (2002)
F. Crupi, R. De Rose, M. Paliy, M. Lanuzza, M. Perna, G. Iannaccone, A portable class of 3-transistor current references with low-power sub-0.5 V operation. Int. J. Circuit Theory Appl. 46, 779–795 (2018)
U. Chi-Wa, W.-L. Zeng, M.-K. Law, C.-S. Lam, R.P. Martins, A 0.5-V supply, 36 nW bandgap reference with 42 ppm/°C average temperature coefficient within −40 °C to 120 °C. IEEE Trans. Circuits Syst. I Regul. Pap. 67, 3656–3669 (2020)
G. Giustolisi, G. Palumbo, M. Criscione, F. Cutri, A low-voltage low-power voltage reference based on subthreshold MOSFETs. IEEE J. Solid-State Circuits 38, 151–154 (2003)
C. Hagleitner, A. Hierlemann, O. Brand, H. Baltes, CMOS single chip gas detection systems—Part I. Sensors Update 11, 101–155 (2002)
W. Huang, L. Liu, Z. Zhu, A sub-200nW all-in-one bandgap voltage and current reference without amplifiers. IEEE Trans. Circuits Syst. II Express Briefs 68, 121–125 (2021)
J. Jiang, W. Shu, J.S. Chang, A 5.6 ppm/°C temperature coefficient, 87-dB PSRR, sub-1-V voltage reference in 65-nm CMOS exploiting the zero-temperature-coefficient point. IEEE J. Solid-State Circuits 52, 623–633 (2016)
M. Kim, S. Cho, A 0.0082-mm2, 192-nW single BJT branch bandgap reference in 0.18-μm CMOS. IEEE Solid-State Circuits Letters 3, 426–429 (2020)
M. Kim, S. Cho, A single BJT bandgap reference with frequency compensation exploiting mirror pole. IEEE J. Solid-State Circuits 56, 2902–2912 (2021)
A. Lahiri, N. Agarwal, Design of sub-1-V CMOS bandgap reference circuit using only one BJT. Analog Integr. Circ. Sig. Process 71, 359–369 (2012)
C.-C. Lee, H.-M. Chen, C.-C. Lu, B.-Y. Lee, H.-C. Huang, H.-S. Fu et al., A High-precision bandgap reference with a V-curve correction circuit. IEEE Access 8, 62632–62638 (2020)
I. Lee, G. Kim, W. Kim, Exponential curvature-compensated BiCMOS bandgap references. IEEE J. Solid-State Circuits 29, 1396–1403 (1994)
S.-Y. Lee, Z.-X. Liao, C.-H. Lee, Energy-harvesting circuits with a high-efficiency rectifier and a low temperature coefficient bandgap voltage reference. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27, 1760–1767 (2019)
W. Li, R. Yao, and L. Guo, A low power CMOS bandgap voltage reference with enhanced power supply rejection. in 2009 IEEE 8th International Conference on ASIC, pp. 300–304 (2009)
J. Lin, L. Wang, Y. Lu, C. Zhan, A nano-watt dual-output subthreshold CMOS voltage reference. IEEE Open J. Circuits Syst. 1, 100–106 (2020)
Q. Liu, B. Zhang, S. Zhen, W. Xue, M. Qiao, A 2.6 ppm/° C 2.5 V piece-wise compensated bandgap reference with low beta bipolar. Electronics 8, 555 (2019)
R. Nagulapalli, K. Hayatleh, S. Barker, and B.N.K. Reddy, A Single BJT 10.2 ppm/°C bandgap reference in 45nm CMOS technology. in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–4 (2020)
R. Nagulapalli, R.K. Palani, S. Bhagavatula, A 24.4 ppm/°C voltage mode bandgap reference with a 1.05V supply. IEEE Trans. Circuits Syst. II Express Briefs 68, 1088–1092 (2021)
F. Olivera, A. Petraglia, Adjustable output CMOS voltage reference design. IEEE Trans. Circuits Syst. II Express Briefs 67, 1690–1694 (2019)
Y. Osaki, T. Hirose, N. Kuroki, M. Numa, 1.2-V supply, 100-nW, 1.09-V bandgap and 0.7-V supply, 52.5-nW, 0.55-V subbandgap reference circuits for nanowatt CMOS LSIs. IEEE J. Solid-State Circuits 48, 1530–1538 (2013)
D. Osipov, S. Paul, Compact extended industrial range CMOS current references. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 1998–2006 (2019)
M.J. Pelgrom, A.C. Duinmaijer, A.P. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24, 1433–1439 (1989)
H. Qiao, C. Zhan, Y. Chen, A-40°C to 140°C picowatt CMOS voltage reference with 0.25-V power supply. IEEE Trans. Circuits Syst. II Express Briefs 68, 3118–3122 (2021)
B. Razavi, Design of Analog CMOS Integrated Circuits (Tata McGraw-Hill Education, New York, 2002)
K. Sanborn, D. Ma, V. Ivanov, A sub-1-V low-noise bandgap voltage reference. IEEE J. Solid-State Circuits 42, 2466–2481 (2007)
M. Seok, G. Kim, D. Blaauw, D. Sylvester, A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 V. IEEE J. Solid-State Circuits 47, 2534–2545 (2012)
Y. Shi, S. Li, J. Cao, Z. Zhou, W. Ling, A 180 nm self-biased bandgap reference with high PSRR enhancement. Nanoscale Res. Lett. 15, 1–10 (2020)
A. Thakur, R. Pandey, S.K. Rai, Low temperature coefficient and low line sensitivity subthreshold curvature-compensated voltage reference. Int. J. Circuit Theory Appl. 48, 1900–1921 (2020)
L. Wang, C. Zhan, A 0.7-V 28-nW CMOS subthreshold voltage and current reference in one simple circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 3457–3466 (2019)
L. Wang, C. Zhan, J. Tang, Y. Liu, G. Li, A 0.9-V 33.7-ppm/°C 85-nW sub-bandgap voltage reference consisting of subthreshold MOSFETs and single BJT. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26, 2190–2194 (2018)
L. Wang, C. Zhan, J. Tang, Y. Liu, G. Li, A 0.9-V 33.7-ppm/°C 85-nW sub-bandgap voltage reference consisting of subthreshold MOSFETs and single BJT. IEEE Trans Very Large Scale Integr. VLSI Syst. 26, 2190–2194 (2018)
L. Wang, C. Zhan, J. Tang, S. Zhao, G. Cai, Y. Liu et al., Analysis and design of a current-mode bandgap reference with high power supply ripple rejection. Microelectron. J. 68, 7–13 (2017)
S. Wang, P.K.T. Mok, An 18-nA ultra-low-current resistor-less bandgap reference for 2.8 V–4.5 V high voltage supply li-ion-battery-based LSIs. IEEE Trans. Circuits Syst. II Express Briefs 67, 2382–2386 (2020)
Z.-K. Zhou, Y. Shi, Y. Wang, N. Li, Z. Xiao, Y. Wang et al., A resistorless high-precision compensated CMOS bandgap voltage reference. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 428–437 (2018)
G. Zhu, Z. Fu, T. Liu, Q. Zhang, Y. Yang, A 2.5 V, 2.56 ppm/° C curvature-compensated bandgap reference for high-precision monitoring applications. Micromachines 13, 465 (2022)
H. Zhuang, Z. Zhu, Y. Yang, A 19-nW 0.7-V CMOS voltage reference with no amplifiers and no clock circuits. IEEE Trans. Circuits Syst. II Express Briefs 61, 830–834 (2014)
Funding
The authors did not receive any direct support from any organization for this work.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hamed Aminzadeh. Simulations were performed by Hamed Aminzadeh, Dalton Martini Colombo and Mohammad Mahdi Valinezhad. The first draft of the manuscript was written by Hamed Aminzadeh, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Aminzadeh, H., Colombo, D.M. & Valinezhad, M.M. A 134-nW Single BJT Bandgap Voltage and Current Reference in 0.18-µm CMOS. Circuits Syst Signal Process 42, 1293–1311 (2023). https://doi.org/10.1007/s00034-022-02158-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-022-02158-5