Skip to main content
Log in

A Trainable Synapse Circuit Using a Time-Domain Digital-to-Analog Converter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We propose a CMOS synapse circuit using a time-domain digital-to-analog converter (TDAC) for realizing spiking neural network hardware with on-chip learning. A TDAC has the advantages that (i) it can reproduce a post-synaptic potential and (ii) its number of analog components for DA conversion, such as current sources and capacitors, is independent of the bit width. We designed a synapse circuit using TSMC 40 nm technology, and the synaptic weight was updated by the remote supervised method (ReSuMe) or spike timing-dependent plasticity (STDP). The circuit simulation results of the designed circuit show that it can execute ReSuMe and generate the time-window function for STDP with high energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.J. Nam et al., Truenorth: Design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput.-Aided Design of Integr. Circuits Syst. 34(10), 1537–1557 (2015)

    Article  Google Scholar 

  2. D. Bankman, , L. Yang, B. Moons, M. Verhelst, B. Murmann, An always-on 3.8 \(\mu \)j/86% CIFAR-10 mixed-signal binary CNN processor with all memory on chip in 28nm CMOS, in ISSCC, pp. 222–224. IEEE (2018)

  3. Gq. Bi, Mm. Poo, Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24(1), 139–166 (2001)

    Article  Google Scholar 

  4. M. Davies, N. Srinivasa, T.H. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain et al., Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)

    Article  Google Scholar 

  5. Q. Dong, M.E. Sinangil, B. Erbagci, D. Sun, W.S. Khwa, H.J. Liao, Y. Wang, J. Chang, A 351TOPS/W and 372.4 GOPS compute-in-memory SRAM macro in 7nm FinFET CMOS for machine-learning applications, in ISSCC, pp. 242–244. IEEE (2020)

  6. W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  7. S.K. Gonugondla, M. Kang, N. Shanbhag, A 42pJ/decision 3.12 TOPS/W robust in-memory machine learning classifier with on-chip training, in ISSCC, pp. 490–492. IEEE (2018)

  8. J.S. Haas, T. Nowotny, H.D. Abarbanel, Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J. Neurophysiol. 96(6), 3305–3313 (2006)

    Article  Google Scholar 

  9. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  10. G. Indiveri, F. Corradi, N. Qiao, Neuromorphic architectures for spiking deep neural networks, in IEDM, pp. 4–2. IEEE (2015)

  11. E.M. Izhikevich, Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  12. W.S. Khwa, J.J. Chen, J.F. Li, X. Si, E.Y. Yang, X. Sun, R., Liu, P.Y. Chen, Q. Li, S. Yu, et al. A 65nm 4kb algorithm-dependent computing-in-memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W fully parallel product-sum operation for binary DNN edge processors, in ISSCC, pp. 496–498. IEEE (2018)

  13. Q. Liu, B. Gao, P. Yao, D. Wu, J. Chen, Y. Pang, W. Zhang, Y. Liao, C.X. Xue, W.H. Chen et al. A fully integrated analog ReRAM based 78.4 TOPS/W compute-in-memory chip with fully parallel MAC computing, in ISSCC, pp. 500–502. IEEE (2020)

  14. R. Mochida, K. Kouno, Y. Hayata, M. Nakayama, T. Ono, H. Suwa, R. Yasuhara, K. Katayama, T. Mikawa, Y. Gohou, A 4M synapses integrated analog ReRAM based 66.5 TOPS/W neural-network processor with cell current controlled writing and flexible network architecture, in VLSIT, pp. 175–176. IEEE (2018)

  15. S. Okumura, M. Yabuuchi, K. Hijioka, K. Nose, A ternary based bit scalable, 8.80 TOPS/W CNN accelerator with many-core processing-in-memory architecture with 896K synapses/mm 2, in VLSIC, pp. C248–C249. IEEE (2019)

  16. T.S. Otis, Y. De Koninck, I. Mody, Characterization of synaptically elicited GABAB responses using patch-clamp recordings in rat hippocampal slices. J. Physiol. 463(1), 391–407 (1993)

    Article  Google Scholar 

  17. J. Park, J. Lee, D. Jeon, A 65nm 236.5 nj/classification neuromorphic processor with 7.5% energy overhead on-chip learning using direct spike-only feedback, in ISSCC, pp. 140–142. IEEE (2019)

  18. F. Ponulak, A. Kasiński, Supervised learning in spiking neural networks with resume: sequence learning, classification, and spike shifting. Neural Comput. 22(2), 467–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, G. Indiveri, A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses. Front. Neurosci. 9, 141 (2015)

    Article  Google Scholar 

  20. X. Si, J.J. Chen, Y.N. Tu, W.H. Huang, J.H. Wang, Y.C. Chiu, W.C. Wei, S.Y. Wu, X., Sun, R. Liu, et al. A twin-8T SRAM computation-in-memory macro for multiple-bit CNN-based machine learning, in ISSCC, pp. 396–398. IEEE (2019)

  21. S. Song, K.D. Miller, L.F. Abbott, Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919 (2000)

    Article  Google Scholar 

  22. J.W. Su, X. Si, Y.C. Chou, T.W. Chang, W.H. Huang, Y.N. Tu, R. Liu, P.J. Lu, T.W. Liu, J.H. Wang, et al. A 28nm 64kb inference-training two-way transpose multibit 6T SRAM compute-in-memory macro for AI edge chips, in ISSCC, pp. 240–242. IEEE (2020)

  23. M. Tsukada, T. Aihara, Y. Kobayashi, H. Shimazaki, Spatial analysis of spike-timing-dependent LTP and LTD in the CA1 area of hippocampal slices using optical imaging. Hippocampus 15(1), 104–109 (2005)

    Article  Google Scholar 

  24. S. Uenohara, K. Aihara, Time-domain digital-to-analog converter for spiking neural network hardware. Circuit Syst. Signal Process 1–19 (2020)

  25. M. Wilson, J.M. Bower, Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. J. Neurophysiol. 67(4), 981–995 (1992)

    Article  Google Scholar 

  26. C.X. Xue, W.H. Chen, J.S. Liu, J.F. Li, W.Y. Lin, W.E. Lin, J.H. Wang, W.C. Wei, T.W. Chang, T.C. Chang, et al. A 1Mb multibit ReRAM computing-in-memory macro with 14.6 ns parallel MAC computing time for CNN based AI edge processors, in ISSCC, pp. 388–390. IEEE (2019)

  27. J.H. Yoon, A. Raychowdhury, A 65nm 8.79 TOPS/W 23.82 mw mixed-signal oscillator-based neuroSLAM accelerator for applications in edge robotics, in ISSCC, pp. 478–480. IEEE (2020)

Download references

Acknowledgements

This work was supported by the VLSI Design and Education Center (VDEC), the University of Tokyo, in collaboration with Cadence Design Systems, Inc., AMED under Grant Number JP20dm0307009, UTokyo Center for Integrative Science of Human Behavior (CiSHuB), the International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), and by the BMAI(BrainMorphic AI) project at Institute of Industrial Science, the University of Tokyo in collaboration with NEC Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Uenohara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uenohara, S., Aihara, K. A Trainable Synapse Circuit Using a Time-Domain Digital-to-Analog Converter. Circuits Syst Signal Process 42, 1312–1326 (2023). https://doi.org/10.1007/s00034-022-02168-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02168-3

Keywords

Navigation