Skip to main content
Log in

A Novel LMS Algorithm with Double Fractional Order

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a double fractional order LMS algorithm (DFOLMS) based on fractional order difference and fractional order gradient, in which a variable initial value strategy is introduced to ensure the convergence accuracy of the algorithm. Through a model approximation, the DFOLMS is transformed into two fractional order difference models to analyze its convergence and steady-state properties indirectly. It is shown that the DFOLMS has different convergence characteristics in different difference intervals; meanwhile, a larger difference order \(\alpha \) and gradient order \(\beta \) would lead to a faster convergence speed but a larger steady-state noise. Finally, the effectiveness and superiority of the proposed DFOLMS are demonstrated by simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Abdeljawad, F. Jarad, D. Baleanu, A semigroup-like property for discrete Mittag–Leffler functions. Adv. Differ. Equ. 2012(1), 1–7 (2012). https://doi.org/10.1186/1687-1847-2012-72

    Article  MathSciNet  MATH  Google Scholar 

  2. R.K. Agarwal, I. Hussain, B. Singh, Application of LMS-based NN structure for power quality enhancement in a distribution network under abnormal conditions. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1598–1607 (2018). https://doi.org/10.1109/TNNLS.2017.2677961

    Article  Google Scholar 

  3. M.T. Akhtar, M.A.Z. Raja, Fractional processing-based active noise control algorithm for impulsive noise, in IEEE China Summit and International Conference on Signal and Information Processing (2015), p. 10–14

  4. F. Albu, H.K. Kwan, Combined echo and noise cancellation based on Gauss-Seidel pseudo affine projection algorithm, in 2004 IEEE International Symposium on Circuits and Systems Conference vol. 3(Vancouver, Canada, 2004), p. 505–508

  5. F. Albu, C. Paleologu, J. Benesty, S. Ciochina, A low complexity proportionate affine projection algorithm for echo cancellation, in 18th European Signal Processing Conference (Aalborg, Denmark, 2010), p. 6–10

  6. A. Bonfanti, J.L. Kaplan, G. Charras, A. Kabla, Fractional viscoelastic models for power-law materials. Soft Matter. 16(26), 6002–6020 (2020). https://doi.org/10.1039/D0SM00354A

    Article  Google Scholar 

  7. N.I. Chaudhary, M.S. Aslam, D. Baleanu, M.A.Z. Raja, Design of sign fractional optimization paradigms for parameter estimation of nonlinear Hammerstein systems. Neural Comput. Appl. 32(12), 8381–8399 (2020). https://doi.org/10.1007/s00521-019-04328-0

    Article  Google Scholar 

  8. N.I. Chaudhary, R. Latif, M.A.Z. Raja, J.A.T. Machado, An innovative fractional order LMS algorithm for power signal parameter estimation. Appl. Math. Model. 83, 703–718 (2020). https://doi.org/10.1016/j.apm.2020.03.014

    Article  MathSciNet  MATH  Google Scholar 

  9. J.F. Cheng, Theory of Fractional Difference Equations (Xiamen University Press, Xiamen, 2011)

    Google Scholar 

  10. S.S. Cheng, Y.H. Wei, Y.Q. Chen, Y. Li, Y. Wang, An innovative fractional order LMS based on variable initial value and gradient order. Signal Process. 133, 260–269 (2017). https://doi.org/10.1016/j.sigpro.2016.11.026

    Article  Google Scholar 

  11. S.S. Cheng, Y.H. Wei, Y.Q. Chen, S. Liang, Y. Wang, A universal modified LMS algorithm with iteration order hybrid switching. ISA Trans. 67, 67–75 (2017). https://doi.org/10.1016/j.isatra.2016.11.019

    Article  Google Scholar 

  12. S.S. Cheng, Y.H. Wei, B. Du, Q. Liang, Y. Wang, A novel modified fractional order LMS algorithm, in 32nd Youth Academic Annual Conference of Chinese Association of Automation (Heifei, China, 2017), p. 531–536

  13. Y.D. Chu, J.T. Fei, S.X. Hou, Adaptive global sliding-mode control for dynamic systems using double hidden layer recurrent neural network structure. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1297–1309 (2020). https://doi.org/10.1109/TNNLS.2019.2919676

    Article  MathSciNet  Google Scholar 

  14. T. Fan, Y. Lin, A variable step-size strategy based on error function for sparse system identification. Circ. Syst. Signal Process. 36(3), 1301–1310 (2017). https://doi.org/10.1007/s00034-016-0344-1

    Article  MATH  Google Scholar 

  15. A.A. Hameed, N. Ajlouni, Z. Orman, A. Ozyavas, Investigating the effectiveness of adaptive step size LMS algorithms for use with VoIP applications. ELECTRICA 20(2), 116–123 (2020). https://doi.org/10.5152/electrica.2020.19080

    Article  Google Scholar 

  16. B. Jalal, X.P. Yang, Q.H. Liu, T. Long, T.K. Sarkar, Fast and robust variable-step-size LMS algorithm for adaptive beamforming. IEEE Antennas Wirel. Propag. Lett. 19(7), 1026–1210 (2020). https://doi.org/10.1109/LAWP.2020.2995244

    Article  Google Scholar 

  17. M.P.A. Jeeva, T. Nagarajan, P. Vijayalakshmi, Adaptive multi-band filter structure-based far-end speech enhancement. IET Signal Proc. 14(5), 288–299 (2020). https://doi.org/10.1049/iet-spr.2019.0226

    Article  Google Scholar 

  18. F.F. Kretschmer, B.L. Lewis, An improved algorithm for adaptive processing. IEEE Trans. Aerosp. Electron. Syst. AES–14(1), 172–177 (1978). https://doi.org/10.1109/TAES.1978.308591

    Article  Google Scholar 

  19. J.L. Li, G. Liu, S.Q. Zheng, P.L. Cui, Q. Chen, Micro-Jitter control of magnetically suspended control moment gyro using adaptive LMS algorithm. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 327–335 (2022). https://doi.org/10.1109/TMECH.2021.3063722

    Article  Google Scholar 

  20. M. Li, L.P. Li, H.M. Tai, Variable step size LMS algorithm based on function control. Circ. Syst. Signal Process. 32(6), 3121–3130 (2013). https://doi.org/10.1007/s00034-013-9598-z

    Article  MathSciNet  Google Scholar 

  21. A.M. Lopes, J.A.T. Machado, C.M.A. Pinto, A.M.S.F. Galhano, Fractional dynamics and MDS visualization of earthquake phenomena. Comput. Math. Appl. 66(5), 647–658 (2013). https://doi.org/10.1016/j.camwa.2013.02.003

    Article  MathSciNet  Google Scholar 

  22. V. Mehandiratta, M. Mehra, G. Leugering, An approach based on Haar wavelet for the approximation of fractional calculus with application to initial and boundary value problems. Math. Methods Appl. Sci. 44(4), 3195–3213 (2020). https://doi.org/10.1002/mma.6800

    Article  MathSciNet  MATH  Google Scholar 

  23. C.A. Monje, Y.Q. Chen, B.M. Vinagre, D.Y. Xue, V. Feliu, Fractional-Order Systems and Controls (Springer, London, 2010)

    Book  MATH  Google Scholar 

  24. C. Qiu, Z.Y. Dong, W.X. Yan, G.B. Qian, Fractional-order complex correntropy algorithm for adaptive filtering in alpha-stable environment. Electron. Lett. 57(21), 813–815 (2021). https://doi.org/10.1049/ell2.12271

    Article  Google Scholar 

  25. S.M. Shah, Riemann–Liouville operator-based fractional normalised least mean square algorithm with application to decision feedback equalisation of multipath channels. IET Signal Proc. 10(6), 575–582 (2016). https://doi.org/10.1049/iet-spr.2014.0210

    Article  Google Scholar 

  26. S.M. Shah, R. Samar, N.M. Khan, M.A.Z. Raja, Design of fractional-order variants of complex LMS and NLMS algorithms for adaptive channel equalization. Nonlinear Dyn. 88(2), 839–858 (2017). https://doi.org/10.1007/s11071-016-3279-y

    Article  MATH  Google Scholar 

  27. S.M. Shah, R. Samar, M.A.Z. Raja, J.A. Chambers, Fractional normalised filtered-error least mean squares algorithm for application in active noise control systems. Electron. Lett. 50(14), 973–975 (2014). https://doi.org/10.1049/el.2014.1275

    Article  Google Scholar 

  28. N. Shlezinger, K. Todros, R. Dabora, Adaptive filtering based on time-averaged MSE for cyclostationary signals. IEEE Trans. Commun. 65(4), 1746–1761 (2017). https://doi.org/10.1109/TCOMM.2017.2655526

    Article  Google Scholar 

  29. K. Singh, R. Saxena, S. Kumar, Caputo-based fractional derivative in fractional Fourier transform domain. IEEE J. Emer. Sel. Top. Circ. Syst. 3(3), 330–337 (2013). https://doi.org/10.1109/JETCAS.2013.2272837

    Article  Google Scholar 

  30. Y. Tan, Z.Q. He, B.Y. Tian, A novel generalization of modified LMS algorithm to fractional order. IEEE Signal Process. Lett. 22(9), 1244–1248 (2015). https://doi.org/10.1109/LSP.2015.2394301

    Article  Google Scholar 

  31. S. Tyagi, S.C. Martha, Finite-time stability for a class of fractional-order fuzzy neural networks with proportional delay. Fuzzy Sets Syst. 381, 68–77 (2020). https://doi.org/10.1016/j.fss.2019.04.010

    Article  MathSciNet  MATH  Google Scholar 

  32. Z.R. Wang, B. Shiri, D. Baleanu, Discrete fractional watermark technique. Front. Inf. Technol. Electron. Eng. 21(6), 880–883 (2020). https://doi.org/10.1631/FITEE.2000133

    Article  Google Scholar 

  33. Y.H. Wei, Q. Gao, S.S. Cheng, Y. Wang, Description and analysis of the time-domain response of Nabla discrete fractional order systems. Asian J. Control 23(4), 1911–1922 (2020). https://doi.org/10.1002/asjc.2402

    Article  MathSciNet  Google Scholar 

  34. Y.H. Wei, Y. Kang, W.D. Yin, Y. Wang, Generalization of the gradient method with fractional order gradient direction. J. Franklin Inst. 357(4), 2514–2532 (2020). https://doi.org/10.1016/j.jfranklin.2020.01.008

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Widrow, M.E. Hoff, Adaptive switching circuits. Neurocomputing 4(1), 126–134 (1960). https://doi.org/10.21236/ad0241531

    Article  Google Scholar 

  36. B. Widrow, J.M. McCool, M.G. Larimore, C.R. Johnson, Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proc. IEEE 64(8), 1151–1162 (1976). https://doi.org/10.1109/PROC.1976.10286

    Article  MathSciNet  Google Scholar 

  37. Z.J. Xiong, L. Liu, H.J. Yang, Fast and precise scanning and tracking control of space beam based on adaptive LMS algorithm. Chin. Space Sci. Technol. 41(5), 95–102 (2021). https://doi.org/10.16708/j.cnki.1000-758X.2021.0071

    Article  Google Scholar 

  38. Z.L. Yu, G.H. Sun, J.F. Lv, A fractional-order momentum optimization approach of deep neural networks. Neural Comput. Appl. 34(9), 7091–7111 (2022). https://doi.org/10.1007/s00521-021-06765-2

    Article  Google Scholar 

  39. Z.W. Zheng, Y.T. Huang, L.H. Xie, B. Zhu, Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output. IEEE Trans. Control Syst. Technol. 26(5), 1851–1859 (2018). https://doi.org/10.1109/TCST.2017.2728518

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation (NNSF) of China (Grant No. 61973329) and the Beijing Natural Science Foundation (Grant No. Z180005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lipo Mo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Mo, L. A Novel LMS Algorithm with Double Fractional Order. Circuits Syst Signal Process 42, 1236–1260 (2023). https://doi.org/10.1007/s00034-022-02192-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02192-3

Keywords

Navigation