Skip to main content
Log in

Conglomeration of Reptile Search Algorithm and Differential Evolution Algorithm for Optimal Designing of FIR Filter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

To solve the problems of sluggish convergence at local minima, a combination of reptile search algorithms with differential evolution (CRSADE) has been developed. The conglomerated algorithm also includes a lens opposition-based learning method, which boosts population diversity and speeds up convergence. The differential evolution algorithm used in the developed CRSADE improves the exploration of the reptile search algorithm through its high ability to locate feasible regions with the best solution. This accelerates convergence by enhancing the end product of the algorithm. The proposed CRSADE helps in designing finite impulse response filters in which absolute error difference is utilized as a fitness function which is minimized by the proposed CRSADE to obtain optimal filter coefficients. To demonstrate its superiority and consistency, a comparison has been made between the developed method and other existing optimization algorithms. The developed filter satisfies the intended objective effectively with lower ripples in the pass band and higher attenuation in the stop band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data is available on request from the authors.

References

  1. L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A.H. Gandomi, The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 376, 113609 (2021). https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Abualigah, Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Comput. Appl. 33(7), 2949–2972 (2021). https://doi.org/10.1007/s00521-020-05107-y

    Article  Google Scholar 

  3. L. Abualigah, M.A. Elaziz, P. Sumari, Z.W. Geem, A.H. Gandomi, Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 191, 1–52 (2022). https://doi.org/10.1016/j.eswa.2021.116158

    Article  Google Scholar 

  4. S. Chauhan, G. Vashishtha, A. Kumar, Approximating parameters of photovoltaic models using an amended reptile search algorithm. J. Ambient Intell. Humaniz. Comput. (2022). https://doi.org/10.1007/s12652-022-04412-9

    Article  Google Scholar 

  5. S. Chauhan, M. Singh, A.K. Aggarwal, Diversity driven multi-parent evolutionary algorithm with adaptive non-uniform mutation. J. Exp. Theor. Artif. Intell. 2020, 1–32 (2020). https://doi.org/10.1080/0952813X.2020.1785020

    Article  Google Scholar 

  6. S. Chauhan, M. Singh, A.K. Aggarwal, Bearing defect identification via evolutionary algorithm with adaptive wavelet mutation strategy. Measurement 179, 109445 (2021). https://doi.org/10.1016/j.measurement.2021.109445

    Article  Google Scholar 

  7. S. Chauhan, G. Vashishtha, A. Kumar, A symbiosis of arithmetic optimizer with slime mould algorithm for improving global optimization and conventional design problem. J. Supercomput. 78(5), 6234–6274 (2022). https://doi.org/10.1007/s11227-021-04105-8

    Article  Google Scholar 

  8. S. Chauhan and G. Vashishtha, “Mutation-based arithmetic optimization algorithm for global optimization,” pp. 1–6, 2021, doi: https://doi.org/10.1109/conit51480.2021.9498358.

  9. S. Chauhan, M. Singh, A.K. Aggarwal, An effective health indicator for bearing using corrected conditional entropy through diversity-driven multi-parent evolutionary algorithm. Struct. Heal. Monit. (2020). https://doi.org/10.1177/1475921720962419

    Article  Google Scholar 

  10. S. Chauhan, M. Singh, and A. K. Agarwal, “Crisscross Optimization Algorithm for the Designing of Quadrature Mirror Filter Bank,” in International Conference on Intelilgent Communication and Computational Techniques, 2019, pp. 124–130.

  11. S. Chauhan, M. Singh, A.K. Aggarwal, Design of a two-channel quadrature mirror filter bank through a diversity-driven multi-parent evolutionary algorithm. Circuits Syst. Signal Process. (2021). https://doi.org/10.1007/s00034-020-01625-1

    Article  Google Scholar 

  12. S. Chauhan, M. Singh, A.K. Aggarwal, Cluster head selection in heterogeneous wireless sensor network using a new evolutionary algorithm. Wirel. Pers. Commun. 119(1), 585–616 (2021). https://doi.org/10.1007/s11277-021-08225-5

    Article  Google Scholar 

  13. S. Dey, P.K. Roy, S. Chakraborty, Optimal design of IIR-type fractional order digital integrator using mayfly optimization algorithm. Circuits Syst. Signal Process. (2022). https://doi.org/10.1007/s00034-022-02141-0

    Article  Google Scholar 

  14. A.K. Dwivedi, D. Subhojit, N.D. Londhe, Review and analysis of evolutionary optimization-based techniques for FIR filter design. Circuits Syst. Signal Process. 37(10), 4409–4430 (2018). https://doi.org/10.1007/s00034-018-0772-1

    Article  Google Scholar 

  15. R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory,in Sixth international symposium on micro machine and human science, IEEE, pp. 39–43, 1995, doi: https://doi.org/10.1109/mhs.1995.494215.

  16. F. Glover, M. Laguna, Tabu search-part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  MATH  Google Scholar 

  17. S. Gupta, K. Deep, S. Mirjalili, J.H. Kim, A modified sine cosine algorithm with novel transition parameter and mutation operator for global optimization. Expert Syst. Appl. 154(2020), 113395 (2020)

    Article  Google Scholar 

  18. V. Jain et al., A power-efficient multichannel low-pass filter based on the cascaded multiple accumulate finite impulse response (CMFIR) structure for digital image processing. Circuits Syst. Signal Process. 41(7), 3864–3881 (2022). https://doi.org/10.1007/s00034-022-01960-5

    Article  Google Scholar 

  19. R. Karthick, A. Senthilselvi, P. Meenalochini, S. Senthil Pandi, Design and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGA. Circuits Syst. Signal Process. 41(9), 5254–5282 (2022). https://doi.org/10.1007/s00034-022-02034-2

    Article  Google Scholar 

  20. M. Kaur, R. Kaur, N. Singh, A novel hybrid of chimp with cuckoo search algorithm for the optimal designing of digital infinite impulse response filter using high-level synthesis. Soft Comput. 26(24), 13843–13867 (2022). https://doi.org/10.1007/s00500-022-07410-3

    Article  Google Scholar 

  21. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated aneealing. Science (80-) 220(4598), 671–680 (1983)

    Article  MATH  Google Scholar 

  22. A. Kumar, R.K. Sunkaria, Design of uniform cosine modulated filter bank using IACOR-LS and its application in baseline wander removal from ECG signal. AEU-Int. J. Electron. Commun. 150, 154198 (2022). https://doi.org/10.1016/j.aeue.2022.154198

    Article  Google Scholar 

  23. J.C.R. Kumar, D.V. Kumar, M.A. Majid, High-performance, energy-efficient, and memory-efficient FIR filter architecture utilizing 8x8 approximate multipliers for wireless sensor network in the Internet of Things. Memories-Mater. Devices Circuits Syst. 3, 100017 (2022). https://doi.org/10.1016/j.memori.2022.100017

    Article  Google Scholar 

  24. S. Kundu, A. Chatterjee, A compact super wideband antenna with stable and improved radiation using super wideband frequency selective surface. AEU-Int. J. Electron. Commun. 150, 154200 (2022). https://doi.org/10.1016/j.aeue.2022.154200

    Article  Google Scholar 

  25. W.P.A.J. Michiels, E.H.L. Aarts, J.H.M. Korst, Theoretical Aspects of Local Search (Springer, Berlin, 2007)

    MATH  Google Scholar 

  26. S. Mirjalili, A.H. Gandomi, S. Zahra, S. Saremi, Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  27. S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015). https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  28. S.K. Saha, S.P. Ghoshal, R. Kar, D. Mandal, Cat Swarm Optimization algorithm for optimal linear phase FIR filter design. ISA Trans. 52(6), 781–794 (2013). https://doi.org/10.1016/j.isatra.2013.07.009

    Article  Google Scholar 

  29. E. G. Talbi, Metaheuristics: from design to implementation, vol. 74. 2009.

  30. G. Vashishtha, R. Kumar, Feature selection based on gaussian ant lion optimizer for fault identification in centrifugal pump, in Recent Advances in Machines and Mechanisms. ed. by V.K. Gupta, C. Amarnath, P. Tandon, M.Z. Ansari (Singapore, Springer Nature Singapore, 2023), pp.295–310

    Chapter  Google Scholar 

  31. G. Vashishtha, R. Kumar, An effective health indicator for Pelton wheel using Levy Flight mutated genetic algorithm. Meas. Sci. Technol. (2021). https://doi.org/10.1088/1361-6501/abeea7

    Article  Google Scholar 

  32. G. Vashishtha, R. Kumar, Centrifugal pump impeller defect identification by the improved adaptive variational mode decomposition through vibration signals. Eng. Res. Express 3(3), 035041 (2021)

    Article  Google Scholar 

  33. G. Vashishtha, R. Kumar, An amended grey wolf optimization with mutation strategy to diagnose bucket defects in Pelton wheel. Measurement 187, 110272 (2021). https://doi.org/10.1016/j.measurement.2021.110272

    Article  Google Scholar 

  34. G. Vashishtha, S. Chauhan, M. Singh, R. Kumar, Bearing defect identification by swarm decomposition considering permutation entropy measure and opposition-based slime mould algorithm. Meas. J. Int. Meas. Confed. 178, 109389 (2021). https://doi.org/10.1016/j.measurement.2021.109389

    Article  Google Scholar 

  35. G. Vashishtha, R. Kumar, Autocorrelation energy and aquila optimizer for MED filtering of sound signal to detect bearing defect in Francis turbine. Meas. Sci. Technol. 33(1), 015006 (2022). https://doi.org/10.1088/1361-6501/ac2cf2

    Article  Google Scholar 

  36. D.H. Wolpert, D. Nna, H. Road, S. Jose, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Computat. 1, 1–32 (1996)

    Google Scholar 

  37. S. Yadav, R. Yadav, A. Kumar, M. Kumar, A novel approach for optimal design of digital FIR filter using grasshopper optimization algorithm. ISA Trans. 108, 196–206 (2021). https://doi.org/10.1016/j.isatra.2020.08.032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govind Vashishtha.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Vashishtha, G., Kumar, A. et al. Conglomeration of Reptile Search Algorithm and Differential Evolution Algorithm for Optimal Designing of FIR Filter. Circuits Syst Signal Process 42, 2986–3007 (2023). https://doi.org/10.1007/s00034-022-02255-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02255-5

Keywords

Navigation