Skip to main content
Log in

Closed Form Approach for Constrained Design of nth-Order IIR Digital Differentiator

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This work presents a new design method for nth-order infinite impulse response (IIR) differentiators. First, the cost function of the IIR differentiator is derived in closed form without frequency sampling. Next, a new optimization scheme is proposed to minimize the cost function under the pole radius constraint. Here, the magnitude and phase specifications are approximated simultaneously with a stability margin. Furthermore, discrete optimization for the IIR differentiator is presented for a specified word length constraint. The discrete optimization results in a stable IIR differentiator with finite word length coefficients owing to the stability margin. Finally, several design examples are demonstrated to evaluate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Ababneh, M. Khodier, Design of approximately linear phase low pass IIR digital differentiator using differential evolution optimization algorithm. Circuits Syst. Signal Process. 40(10), 5054–5076 (2021). https://doi.org/10.1007/s00034-021-01710-z

    Article  Google Scholar 

  2. M. Al-Alaoui, Linear phase low-pass IIR digital differentiators. IEEE Trans. Signal Process. 55(2), 697–706 (2007). https://doi.org/10.1109/TSP.2006.885741

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Baran, D. Wei, A.V. Oppenheim, Linear programming algorithms for sparse filter design. IEEE Trans. Signal Process. 58(3), 1605–1617 (2010). https://doi.org/10.1109/TSP.2009.2036471

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Chen, M. Saif, Output feedback controller design for a class of MIMO nonlinear systems using high-order sliding-mode differentiators with application to a laboratory 3-D crane. IEEE Trans. Ind. Electron. 55(11), 3985–3997 (2008). https://doi.org/10.1109/TIE.2008.2004384

    Article  Google Scholar 

  5. A. Chottera, G. Jullien, A linear programming approach to recursive digital filter design with linear phase. IEEE Trans. Circuits Syst. CAS–29(3), 139–149 (1982). https://doi.org/10.1109/TCS.1982.1085123

    Article  Google Scholar 

  6. O.P. Goswami, T.K. Rawat, D.K. Upadhyay, A novel approach for the design of optimum IIR differentiators using fractional interpolation. Circuits Syst. Signal Process. 39(3), 1688–1698 (2020). https://doi.org/10.1007/s00034-019-01211-0

    Article  Google Scholar 

  7. A. Gupta, S. Kumar, Closed-form analytical formulation for Riemann–Liouville-based fractional-order digital differentiator using fractional sample delay interpolation. Circuits Syst. Signal Process. 40(5), 2535–2563 (2021). https://doi.org/10.1007/s00034-020-01589-2

    Article  MATH  Google Scholar 

  8. T. Hinamoto, W.-S. Lu, Digital Filter Design and Realization (River Publishers, 2017)

  9. V.K. Ingle, J.G. Proakis, Digital Signal Processing Using Matlab (Cengage Learning, 2011)

  10. M. Iqbal, A.I. Bhatti, S.I. Ayubi, Q. Khan, Robust parameter estimation of nonlinear systems using sliding-mode differentiator observer. IEEE Trans. Ind. Electron. 58(2), 680–689 (2011). https://doi.org/10.1109/TIE.2010.2046608

    Article  Google Scholar 

  11. R. Kunii, T. Yoshida, N. Aikawa, Design method for low-delay maximally flat fir digital differentiators with variable stopbands obtained by minimizing \(L_p\) norm. IEICE Trans. Fundam. E100–A(7), 1713–1721 (2017). https://doi.org/10.1587/transfun.E100.A.1513

    Article  Google Scholar 

  12. C. Mullis, R. Roberts, The use of second-order information in the approximation of discrete-time linear systems. IEEE Trans. Acoust. Speech Signal Process. ASSP–24(3), 226–238 (1976). https://doi.org/10.1109/TASSP.1976.1162795

    Article  MathSciNet  Google Scholar 

  13. M. Nakamoto, N. Aikawa, Minimax design of sparse IIR filters using sparse linear programming. IEICE Trans. Fundam. E104–A(8), 1006–1018 (2021). https://doi.org/10.1587/transfun.2020EAP1096

    Article  Google Scholar 

  14. M. Nakamoto, T. Hinamoto, S. Ohno, Noise reduction in two-dimensional recursive digital filters with discrete optimized error feedback coefficients. Circuits Syst. Signal Process. 31(4), 1359–1378 (2012). https://doi.org/10.1007/s00034-011-9376-8

    Article  MathSciNet  Google Scholar 

  15. M. Nakamoto, S. Ohno, Design of multi-band digital filters and full-band digital differentiators without frequency sampling and iterative optimization. IEEE Trans. Ind. Electron. 61(9), 4857–4866 (2014). https://doi.org/10.1109/TIE.2013.2290765

    Article  Google Scholar 

  16. R.C. Nongpiur, D.J. Shpak, A. Antoniou, Design of IIR digital differentiators using constrained optimization. IEEE Trans. Signal Process. 62(7), 1729–1739 (2014). https://doi.org/10.1109/TSP.2014.2302733

    Article  MathSciNet  MATH  Google Scholar 

  17. A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (Prentice Hall, 2009)

  18. Z.U. Sheikh, H. Johansson, A class of wide-band linear-phase fir differentiators using a two-rate approach and the frequency-response masking technique. IEEE Trans. Circuits Syst. I 58(8), 1827–1839 (2011). https://doi.org/10.1109/TCSI.2011.2107270

    Article  MathSciNet  Google Scholar 

  19. T. Stepinski, S. Banka, The differentiator of slowly varying electrical signals. IEEE Trans. Ind. Electron. Cont. Inst. IECI–22(1), 62–65 (1975). https://doi.org/10.1109/TIECI.1975.351222

    Article  Google Scholar 

  20. S. Valiviita, S.J. Ovaska, Delayless recursive differentiator with efficient noise attenuation for motion control applications, in Proceedings of IEEE Annual Conference of the Industrial Electronics Society (1998), pp. 1481–1486. https://doi.org/10.1109/IECON.1998.722870

  21. Y. Wang, New window functions for the design of narrowband lowpass differentiators. Circuits Syst. Signal Process. 32(4), 1771–1790 (2013). https://doi.org/10.1007/s00034-012-9536-5

    Article  Google Scholar 

  22. T. Yoshida, Y. Sugiura, N. Aikawa, A closed-form design of linear phase fir band-pass maximally flat digital differentiators with an arbitrary center frequency. IEICE Trans. Fundam. E97–A(12), 2611–2617 (2014). https://doi.org/10.1587/transfun.e97.a.2611

    Article  Google Scholar 

  23. T. Yoshida, Y. Sugiura, N. Aikawa, A general expression of the low-pass maximally flat fir digital differentiators, in Proceedings of IEEE International Symposium on Circuits and Systems (2015). https://doi.org/10.1109/ISCAS.2015.7169117

Download references

Acknowledgements

The authors would like to express sincere thanks to the anonymous reviewers for their valuable comments. This work was supported in part by the research grant from the Mazda Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Nakamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamoto, M., Aikawa, N. Closed Form Approach for Constrained Design of nth-Order IIR Digital Differentiator. Circuits Syst Signal Process 42, 3385–3411 (2023). https://doi.org/10.1007/s00034-022-02264-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02264-4

Keywords

Navigation